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Abstract. We introduce continuous-time rational models of dynamic unobservable 
fund manager abilities with risk-neutral or risk-averse investors. Investors forever face 
time nonmonotonic ability-tracking problems. Consequently, precision of inferred 
abilities and inferred abilities’ sensitivities to fund returns’ innovation shocks are time 
nonmonotonic. These, in turn, induce fund flow-performance sensitivities that are time 
nonmonotonic. Our empirical evidence of nonmonotonic flow-performance 
sensitivities supports our theoretical framework, showing that our model explains real-
world flow-performance relations better than current models, which predict only 
monotonic flow-performance sensitivities. We also offer insights to help resolve an 
ongoing dispute of whether empirical flow-performance relations are linear or convex. 
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1 Introduction 

Current literature demonstrates that fund return and size together reflect manager 

abilities, whereas fund flows reacting to fund performance reflect investors’ rationality and 

competitiveness [see, for example, the innovative Berk and Green (2004), Berk (2005), and 

Berk and van Binsbergen (2015)]. As fund managers’ abilities to outperform passive 

benchmarks are unobservable, to make investment decisions, investors use fund performance 

to form and update estimates of these unobservable abilities. Most current models studying this 

flow-performance relation assume that managers’ abilities are unobservable constants.1 We 

wonder, by allowing dynamic manager abilities, whether we can better explain and predict the 

flow-performance relation, and offer more insights to investors’ rationality and competitiveness. 

Actually, current empirical evidence is likely to support dynamic nonlinear manager 

abilities evolutions, which induce nonmonotonic manager abilities’ precisions. Researchers 

find that funds’ performance persists only in the short term [see, for example, Carhart (1997), 

Berk and Tonks (2007), Mamaysky, Spiegel, and Zhang (2007), and Wang (2014)]. Besides 

effects of the fund industry’s decreasing returns to scale,2  the dynamics of unobservable 

manager abilities are also likely to contribute to the lack of long-term persistence in fund 

performance. Further, current studies show that fund managers’ abilities to outperform passive 

benchmarks are affected by fund family activities [see, for example, Gaspar, Massa, Matos 

(2006) and Evans (2010), and Brown and Wu (2016)], by changing attention allocation 

[Kacperczyk, Nieuwerburgh, and Veldkamp (2016)], by managers’ replacements [Dangl, Wu, 

and Zechner (2008)], and by macroeconomic conditions [see, for example, Ferreira, Keswani, 

Miguel, and Ramos (2012, 2013), Kacperczyk, Nieuwerburgh, and Veldkamp (2014), and 

Feldman, Saxena, and Xu (2020, 2021)]. Because these fund family activities, managers’ 

replacements, changing attention allocation, and macroeconomic factors are dynamic, they 

might drive fund managers’ abilities to change over time. Thus, in this study, we investigate, 

 
1 See, for example, Berk and Green (2004), Brown and Wu (2016), Huang, Wei, and Yan (2007), and Lynch and 
Musto (2003). Brown and Wu (2013), a working paper version of Brown, and Wu (2016) investigating fund 
families, and Dangl, Wu and Zechner (2008), studying managers’ optimal replacement, model dynamic 
unobservable managing ability under a linear framework, allowing only monotonic precisions of abilities. 
2  Theoretical models, such as those of Berk and Green (2004) and Pastor and Stambaugh (2012), show that 
investors invest more (less) in the funds that perform better (worse), and this larger (smaller) amount of 
investments increases (decreases) fund costs due to decreasing returns to scale, driving down (up) the fund 
performance in the future. Thus, fund performance does not persist. 
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theoretically and empirically, the impact of dynamic unobservable fund manager abilities, on 

explanatory and predictive powers of fund flow-performance relations. 

The first question we address (within a linear framework) 

The first question we pose and answer is how investors and managers learn fund 

managers’ dynamic unobservable abilities. To model this learning process, we apply optimal 

nonlinear filtering techniques used in the asset pricing and fund management literature [see, 

for example, in funds context, Berk and Stanton (2007), Dangl, Wu, and Zechner (2008), 

Brown and Wu (2013, 2016), Choi, Kahraman, and Mukherjee (2016), and in asset pricing 

context, Dothan and Feldman (1986), Detemple (1986), and Feldman (1989, 2007)3 ]. We 

develop a continuous-time framework and model representative (identical) active funds with a 

passive benchmark portfolio. In our baseline model, the active funds’ observable gross alphas 

follow Itô processes, where instantaneous expected returns (the drift terms) depend on the 

dynamic unobservable manager ability levels. These ability levels also follow Itô processes. 

Their instantaneous expected returns (drift terms) are affine functions of current managers’ 

ability levels, and their diffusions are (locally, imperfectly) correlated with those of funds’ gross 

alpha processes. With their prior beliefs of managers’ ability levels and fund gross alphas, and 

conditional on observable realized fund gross alphas, investors generate posterior beliefs, or 

estimates, of managers’ ability levels and of forthcoming fund expected gross alphas. As 

manager abilities are dynamic, estimation errors (or precision) of conditional expected manager 

abilities are dynamic as well. Depending on parameter values and realizations, the time pattern 

of these estimation errors can be increasing, decreasing, or constant. 4  Consequently, 

sensitivities of conditional expected manager abilities to new observations of fund gross alphas 

have time patterns that are increasing, decreasing, or constant, respectively. 

We maintain many of the features of the model in Berk and Green (2004) and Brown 

and Wu (2016). In particular, we assume decreasing returns to scale (i.e., funds’ total costs are 

 
3 Assuming constant unobservable manager abilities, Berk and Stanton (2007) study closed-end fund discounts, 
Brown and Wu (2016) study cross-fund learning within fund families, and Choi, Kahraman, and Mukherjee (2016) 
study investors’ learning on managers’ abilities from their performance in other funds that they manage. They 
both use filtering techniques to analyze the learning of constant abilities by observing fund returns. 
4 Our linear framework does not allow nonmonotonicity of the estimation error (or precision). However, the 
nonlinear framework that we introduce later and describe below, allow nonmonotonicity, and gives rise to some 
of our most substantial results. 
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increasing and convex in the size of assets under active management); we allow managers to 

set constant management fees and choose the size of wealth they actively manage; and we 

assume that fund managers and investors are rational and symmetrically informed. In our 

baseline model, we assume risk-neutral investors (i.e., investors supply capital with infinite 

elasticity to funds that have positive excess expected returns), and then we model the 

equilibrium for mean-variance risk-averse investors. 

The second question we address (within a linear framework) 

The second question we pose and answer is how do dynamics of fund manager abilities 

affect the equilibrium flow-performance relations? We show that in equilibrium, consistent 

with previous theoretical models, fund flows are increasing and convex in fund performance 

realizations (measured by fund net alphas), and that higher management fees and higher return 

volatilities each reduces fund flows’ sensitivity to fund performance (flow-performance 

sensitivity). New to the literature, we find that higher (systematic) sensitivity of funds’ gross 

alphas to inferred manager abilities and higher (local) sensitivity of inferred manager abilities 

to innovation shocks in fund gross alphas increase the flow-performance sensitivity. This is 

because a higher level of the former sensitivity increases fund performance, given the same 

level of manager abilities, and a higher level of the latter sensitivity makes performance shocks 

more informative on manager abilities.5 

In our model, the increasing, decreasing, or constant time patterns of sensitivities of 

inferred manager abilities to innovation shocks in fund gross alphas, drive the flow-

performance sensitivities to be increasing, decreasing, or constant over time, respectively. This 

feature is different from the previous models such as Berk and Green (2004) and Brown and 

Wu (2016), in which the decreasing sensitivity of inferred manager abilities to new realizations 

of fund returns drives the flow-performance sensitivity to decrease monotonically over time. 

In addition, we show that, for certain parameter values, our model degenerates to a continuous-

time analog of the Berk and Green (2004) model, recreating the insights of their model in a 

dynamic context. Also, for certain parameter values, the relation of fund flows and manager 

abilities in our model degenerates to a single fund version of Brown and Wu (2016) model. 

 
5 Please see discussions of equilibrium flow-performance relations in Section 2.3. 
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Risk-averse investors 

We also study the case of mean-variance risk-averse investors who maximize their 

portfolios’ instantaneous Sharpe ratios. These investors’ optimal portfolios are the same as 

those of investors with Bernoulli logarithmic preferences [see, for example, Feldman (1992)]. 

Moreover, these portfolios are “growth optimal,” as independently discovered by Bernoulli 

[Bernoulli (1954)] and implied by the “Kelly Criterion” [Kelly (1956)].6  We are able to 

demonstrate that, as explained below, various effects offset each other such that investors’ risk 

aversion does not affect the equilibrium flow-performance sensitivity. The reason is that 

investors’ risk aversion affects only the sensitivity of dollar amounts of fund flows to 

performance; when fund flows are calculated as flow percentages as we do here, effects of 

investors’ risk aversion cancel out.7 Thus, the equilibrium flow-performance sensitivity where 

investors are mean-variance risk-averse is similar to the one where investors are risk neutral. 

Nonlinear framework of manager ability levels and fund gross alphas 

We further allow a nonlinear structure of active funds’ observable gross alphas and the 

dynamic unobservable manager ability levels. Instantaneous expected returns (drift terms) and 

diffusion terms of the processes of manager ability levels and gross alphas are functions of time 

and fund’s gross share price. 8  Under this nonlinear framework, the equilibrium flow-

performance sensitivity can have more complex patterns over time, including nonmonotonic 

ones; thus, these theoretical results offer additional insights into complex empirical flow-

performance relations. Specifically, nonmonotonic (over time) precisions of inferred abilities, 

induce nonmonotonic (over time) flow-performance sensitivities. This feature is different from 

the one in Berk and Green (2004) and subsequent models, in which estimation errors of the 

conditional expected manager abilities decrease over time, asymptotically to zero, inducing 

decreasing flow-performance sensitivities, or the estimation errors change monotonically over 

 
6  Further, this criterion might be seen as active managers’ “horizon” choice for investors with potentially 
heterogeneous horizons and as resolving/avoiding the time inconsistency of mean-variance preferences. See 
Basak and Chabakauri (2010), and Feldman and Leisen (2019). 
7 Risk-averse investors maximize the instantaneous Sharpe ratios of their portfolios, which contain active funds 
and passive benchmark portfolios. Investors’ risk aversion affects the equilibrium portfolio weights allocated to 
the active funds and, consequently, affect the equilibrium fund sizes and changes in fund sizes. The flow 
percentage is the change in fund sizes divided by fund sizes, and the effects of investors’ risk aversion on the 
numerator and on the denominator cancel out. 
8 We use gross share price, i.e., share price before fund costs and fees, to calculate fund gross alphas. 
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time, inducing monotonic flow-performance sensitivities. 

Empirical study 

Using the U.S. active equity mutual fund data in the Center for Research in Security 

Prices (CRSP), we empirically test the flow-performance sensitivity over time. We find that in 

our sample period, on average, fund flow sensitivity to fund net alphas (flow–net alpha 

sensitivity), over time, first decreases, then increases, and then decreases again. We stress that 

as we model dynamic unobservable abilities, investors face continuous “tracking problems.” 

Thus, patterns of inferred abilities are dynamic as well. Patterns depend on initial conditions, 

parameter values, and stochastic realizations. Thus, the pattern that we identified, of 

decreasing-increasing-decreasing flow–net alpha sensitivities, is specific to our sample period. 

Nonetheless, this nonmonotonic pattern is sufficient to support dynamic abilities with 

nonmonotonic precisions rather than with monotonic ones. Also, our empirical findings on 

individual funds show9 that the majority of funds experience no significant changes in flow–

net alpha sensitivity over time, and some funds even experience a significant increase in flow–

net alpha sensitivity from one period to another. We also test how the flow–net alpha sensitivity 

changes with fund age. We find that, on average, the flow–net alpha sensitivity first decreases 

with fund age, then increases with it, then decreases with it again, and finally increases with it. 

These findings are consistent with dynamic abilities with nonmonotonic precisions and 

are inconsistent with monotonic precisions. It is plausible that, in our sample, the decrease in 

the flow–net alpha sensitivity in the earliest period or in the earliest age years for an average 

fund, is due to the fact that investors have more and more precise estimates of manager abilities 

as the number of observations increases. However, manger abilities are dynamic over time as 

they are driven by dynamic factors such as fund family activities, managers’ replacements, 

changing attention allocation, and macroeconomic factors. The dynamic manager abilities 

induce lower or higher estimation precisions in the later periods or age years. Consequently, 

the flow–net alpha sensitivity changes with time period or fund age nonmonotonically. Also, 

in the real world, it is likely that dynamic unobservable manager abilities, which possibly vary 

across funds, generate different patterns of time-varying flow-performance sensitivity for 

 
9 See Table 5. 
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different funds. 

More on the literature and our findings 

In the literature of the flow-performance relation, some studies suggest that this relation 

is convex [see, for example, Berk and Green (2004), Brown and Wu (2016), and Lynch and 

Musto (2003)], and other studies suggest that it is linear [see, for example, Spiegel and Zhang 

(2013)]. Our study complements this discussion by showing that the flow-performance relation 

is dynamic (specifically, the intercept, slope, and curvature of this function change over time), 

making empirical identification of the relation complex. In the real world, both cross-sectional 

heterogeneity and time dynamics of flow-performance relations affect empirical results; thus, 

both should be considered. 

There is also a discussion of how funds’ marketing activities affect flow-performance 

relations. For example, Huang, Wei, and Yan (2007) find that funds with marketing activities 

exhibit a less convex flow-performance relation. They show that as funds with marketing 

activities reduce investors’ participation costs, i.e., costs to obtain fund information, the lower 

participation costs also lower new investors’ requirements for fund performance, making fund 

flows increase more slowly with fund performance. Different from their insights, we show that 

if fund marketing expenditures are eventually transferred to investors through management 

fees, then the higher fees lead to a less convex flow-performance relation. More importantly, if 

funds marketing activities help investors estimate managers’ abilities, then investors have more 

precise estimates of these abilities over time. The improvements in estimation precision lower 

the sensitivity of these inferred abilities to fund performance innovation shocks and, 

consequently, decrease the convexity of flow-performance relations. 

Our paper also relates to other recent papers that study fund flows, fund performance, 

fund sizes, and fund asset classes, such as Bollen (2007), Chen, Goldstein, and Jiang (2010), 

Chen, Hong, Huang, and Kubik (2004), Rakowski (2010), and Yan (2008). 

Contribution 

We contribute to the literature first by providing, a model of dynamic unobservable 

manager abilities under a nonlinear framework, which better explains the real-world 
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nonmonotonic time-varying flow-performance sensitivity.10 

Second, we provide empirical evidence that supports the case of dynamic abilities with 

nonmonotonic precisions rather than with monotonic ones, and by developing an empirical 

framework for testing this issue. Third, our model offers new insights into empirical findings 

in the current literature, including the complex curvature of flow-performance relations, by 

using panel data and the findings that marketing activities induce smaller such curvature. 

Finally, our findings imply that the innovative insights of Berk and Green (2004) 

regarding myth of active portfolio management [see also Berk (2005)], which were 

demonstrated within a parsimonious model, hold in a wider class of equilibria in terms of 

production structure (dynamic abilities with nonmonotonic precisions rather than with 

monotonic precisions), information structure (unobservable processes, including nonlinear 

ones, rather than unobservable constant, which gradually becomes observable or linear 

structures with monotonic precisions of ability estimates), and preferences structure (risk-

neutral or risk-averse investors, rather than risk-neutral investors only). 

Section 2 introduces our model. Section 3 provides simulation results of our equilibria. 

Section 4 illustrates our empirical analyses. Section 5 discusses our model’s insights into 

current empirical phenomena. Section 6 concludes. 

2 The Model 

We introduce a rational equilibrium framework to study how the dynamics of 

unobservable manager abilities affect equilibrium flow-performance relations. We first show 

how managers and investors infer dynamic unobservable manager abilities and form 

equilibrium flow-performance relations by solving, respectively, managers’ profit-maximizing 

problems and investors’ portfolio optimization problems. Our baseline model assumes risk-

neutral investors and a linear filtering framework of dynamic unobservable manager abilities, 

as inferred from share prices. Then, we study mean-variance risk-averse investors, and develop 

a nonlinear filtering framework of the dynamic unobservable manager abilities, as inferred 

from share prices. Some of the mathematical proofs of our results are in the Appendix. 

 
10 Brown and Wu (2013), an earlier working paper version of Brown and Wu (2016), and Dangl, Wu and Zechner 
(2008) model dynamic unobservable managing ability under linear frameworks. Their models can explain only a 
monotonic time-varying pattern of flow-performance sensitivity. 
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Some of our model settings are similar to those of Berk and Green (2004) and Brown 

and Wu (2016).11 We use a two-fund setting, i.e., investors can invest in a representative active 

fund, with one manager, and in a passive benchmark portfolio.12 This setting is also similar to 

those in Wei, and Yan (2007), and Lynch and Musto (2003). Within a continuous-time 

framework, we study the active fund manager and investors over a finite time interval/period, 

at times 𝑡, 𝑡 ∈ [0,𝑇], where 𝑇 ,𝑇 > 0, is a constant. 

2.1 Observable Fund Returns and Unobservable Manager Ability:  Linear Filtering 

Let 𝜉௧, 0 ≤ 𝑡 ≤ 𝑇 be the active fund’s gross share price, i.e., share price before fund 

costs and fees,13 so 𝑑𝜉௧/𝜉௧ is the instantaneous fund gross return. For simplification, we also 

assume that this active fund has a beta loading of one on the passive benchmark portfolio. To 

focus on the active fund’s return, similar to previous models,14  we normalize the passive 

benchmark portfolio’s return to zero so that the fund instantaneous gross return in excess of the 

passive benchmark is 𝑑𝜉௧/𝜉௧ −  0 = 𝑑𝜉௧/𝜉௧. Hereafter, we call the active fund’s instantaneous 

gross alpha 𝑑𝜉௧/𝜉௧, briefly called gross alpha. 

The active fund’s gross alpha depends on the active fund manager’s instantaneous 

ability, 𝜃௧, 0 ≤ 𝑡 ≤ 𝑇, to beat the benchmark. We will call it briefly, ability. This ability is 

unobservable to both the fund manager and investors. The fund manager and investors learn 

about 𝜃௧  by observing the history of the fund gross alpha 𝑑𝜉௦/𝜉௦ , 0 ≤ 𝑠 ≤ 𝑡  (or 

equivalently by observing gross fund share price 𝜉௦ , 0 ≤ 𝑠 ≤ 𝑡 ). We assume a complete 

probability space ሺΩ,ℱ,ℙሻ  with filtration ሼℱ௧ሽ଴ஸ௧ஸ் , a right-continuous, nondecreasing 

family of sub-𝜎-algebras. Two independent Wiener processes, 𝑊ଵ,௧ and 𝑊ଶ,௧, 0 ≤ 𝑡 ≤ 𝑇, are 

adapted to this filtration. The unobservable 𝜃௧ and the observable 𝜉௧ evolve as follows. 

 𝑑𝜃௧ = ሺ𝑎଴ + 𝑎ଵ𝜃௧ሻ𝑑𝑡 + 𝑏ଵ𝑑𝑊ଵ,௧ + 𝑏ଶ𝑑𝑊ଶ,௧ , (1) 

 
11 Similar to Berk and Green (2004) and Brown and Wu (2016), we assume that participants in the model are 
symmetrically informed. Also, the model is partial equilibrium. Managers’ actions do not affect the passive 
benchmark returns, and we do not model the source of managers’ abilities to outperform the passive benchmark 
portfolio. 
12 This two-fund model can be extended to a multiple-fund model in which investors invest in 𝑛 (𝑛 ≥ 2) active 
funds and a passive benchmark portfolio. 
13 In the real world, fund costs and fees are usually paid separately when investors buy and/or redeem the fund 
shares. 
14 See, for example, Huang, Wei, and Yan (2007). 
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 𝑑𝜉௧𝜉௧ = 𝐴ଵ𝜃௧𝑑𝑡 + 𝐵𝑑𝑊ଶ,௧ , (2) 

with initial conditions 𝜃଴ and 𝜉଴, respectively. The parameters 𝑎଴, 𝑎ଵ, 𝑏ଵ, 𝑏ଶ, 𝐴ଵ, and 𝐵 

are known constants. To make economic sense, we assume that 𝐴ଵ > 0 (otherwise the ability 

becomes a “disability”). For simplicity and without loss of generality, we assume 𝐵 > 0. 

While ability is unobservable to managers and investors, the evolution processes (“laws 

of motion”) and all parameter values are common knowledge. 

This setting implies the following. First, the ability, 𝜃௧, to beat the benchmark follows 

a dynamic process. Second, the fund gross alpha, 𝑑𝜉௧/𝜉௧, depends on the manager’s ability 

and on random shocks. As 𝐴ଵ > 0, a manager with positive (negative) ability tends to create 

positive (negative) fund gross alpha; and the larger 𝐴ଵ is, the higher the sensitivity of gross 

alpha to ability is. Also, 𝐵 is the diffusion coefficient of fund gross alpha, which positively 

corresponds to its volatility. Third, where 𝑏ଶ > 0 (𝑏ଶ < 0) , that is, 𝑏ଶ  is strictly positive 

(negative), the shock 𝑊ଶ,௧ affects both ability and fund gross alpha, which, consequently, are 

instantaneously positively (negatively) correlated, as 𝑏ଶ𝐵 > 0 (𝑏ଶ𝐵 < 0) . Where 𝑏ଶ = 0 , 

and 𝑏ଵ > 0 ability and gross alpha are affected by independent shocks, thus, instantaneously 

uncorrelated. A larger 𝑏ଶ relative to 𝑏ଵ implies a higher instantaneous correlation between 

gross alpha and ability. 

To facilitate our analysis, we define the following terms: 

• ℱ௧క ≜  the 𝜎 -algebras generated by ሼ𝜉௦, 0 ≤ 𝑠 ≤ 𝑡ሽ , with ቄℱ௧కቅ଴ஸ௧ஸ்  as the 

corresponding filtration over 0 ≤ 𝑡 ≤ 𝑇; 

• 𝑚௧ ≜ the mean of 𝜃௧ conditional on the observations 𝜉௦, 0 ≤ 𝑠 ≤ 𝑡, i.e., 𝑚௧ ≜ E ቀ𝜃௧|ℱ௧కቁ; 

• 𝛾௧ ≜ the variance of 𝜃௧ conditional on the observations 𝜉௦, 0 ≤ 𝑠 ≤ 𝑡, i.e., 𝛾௧ ≜ E ቂ(𝜃௧ − 𝑚௧)ଶ|ℱ௧కቃ. 
We assume that the conditional distribution of 𝜃଴,  given 𝜉଴  (the prior distribution), is 

Gaussian, 𝑁(𝑚଴, 𝛾଴), with finite values of 𝜉଴, 𝑚଴, and 𝛾଴. 

The manager and investors update their estimates of 𝜃௧ using their observations 𝜉௧, in 

a Bayesian fashion. This type of model is presented in Liptser and Shiryaev (2001a, Ch. 8; 
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2001b, Ch. 12). 15  The techniques are called optimal nonlinear filtering and are used in 

numerous previous studies [see, for example, Dothan and Feldman (1986), Detemple (1986), 

Feldman (1989, 2007), and Berk and Stanton (2007)]. The following proposition describes how 

the managers and investors form and update their estimates of 𝜃௧. 
Proposition 1. 

a. Let ℱ௧కబ,ௐഥ , 0 ≤ 𝑡 ≤ 𝑇, be the 𝜎-algebras generated by ሼ𝜉଴, 𝑊ഥ௦, 0 ≤ 𝑠 ≤ 𝑡ሽ. Then, 

 𝑊ഥ௧ = න 𝑑𝜉௦/𝜉௦ − 𝐴ଵ𝑚௦𝑑𝑠𝐵௧
଴  (3) 

is a Wiener process with respect the filtration ቄℱ௧కቅ଴ஸ௧ஸ், with 𝑊ഥ଴ = 0; and the 𝜎-

algebras ℱ௧క and ℱ௧కబ,ௐഥ  are equivalent. 

b. 𝑊ഥ௧  innovates the (observable) conditional mean, 𝑚௧ , of the unobservable fund 

manager ability, 𝜃௧ , to beat the benchmark. The variables 𝑚௧ , 𝜉௧ , and 𝛾௧  are the 

unique, continuous, ℱ௧క-measurable solutions of the system of equations 

 𝑑𝑚௧ = (𝑎଴ + 𝑎ଵ𝑚௧)𝑑𝑡 + 𝜎௠(𝛾௧)𝑑𝑊ഥ௧ , (4) 

 𝑑𝜉௧𝜉௧ = 𝐴ଵ𝑚௧𝑑𝑡 + 𝐵𝑑𝑊ഥ௧ , (5) 

 𝑑𝛾௧ = [𝑏ଵଶ + 𝑏ଶଶ + 2𝑎ଵ𝛾௧ − 𝜎௠ଶ (𝛾௧)]𝑑𝑡, (6) 

where 

 𝜎௠(𝛾௧) ≜ 𝑏ଶ𝐵 + 𝐴ଵ𝛾௧𝐵 , (7) 

with initial conditions 𝜉଴, 𝑚଴, and 𝛾଴. 

c. The random process (𝜃௧, 𝜉௧), 0 ≤ 𝑡 ≤ 𝑇 is conditionally Gaussian given ℱ௧క. 

Proof. Theorem 8.1 of Liptser and Shiryaev (2001a) and Theorem 12.5 of Liptser and Shiryaev 

(2001b) jointly provide the proof of Proposition 1a. Theorem 12.5 of Liptser and Shiryaev 

(2001b) provides the proof of Proposition 1b. Theorem 11.1 of Liptser and Shiryaev (2001b) 

provides the proof of Proposition 1c. The technical requirements to prove the theorems are 

regular conditions over the period 0 ≤ 𝑡 ≤ 𝑇, such as bounded parameter values, integrality 

 
15 The models presented by Liptser and Shiryaev (2001a,b) allow all model parameters to be stochastic, functions 
of the stochastic gross alpha. For simplicity, we first introduce a linear framework with constant parameters. We 
analyze the nonlinear framework with stochastic parameters in Section 2.6. 



12 
 

of variables, and finite moments of variables.16 The intuition of these requirements is that, over 

a finite time period, almost surely the manager ability, fund gross alphas, and their variations 

should be finite so that the learning process is well defined. These requirements are satisfied, 

due to our finite parameter values, finite initial values, and the finite horizon within which we 

study our model. In the real world, abilities that keep improving or deteriorating over a short 

period, or abilities that revert to a finite mean over a long period, would satisfy the technical 

requirements and follow our learning process. 

The Wiener process 𝑊ഥ௧  represents the innovation shocks to estimates of manager 

unobservable abilities. By Proposition 1a, the process 𝜉௧ and the innovation process 𝑊ഥ௧ with 𝜉଴ generate the same information. 

Proposition 1b implies that investors make their optimal decisions in two steps. First, 

by observing the history of the fund’s share price 𝜉௧  and restructuring the state space to 

consists of observable processes only while maintaining informational equivalence,17  they 

generate a posterior estimate of the fund manager ability 𝑚௧. Second, they use their posterior 

estimate 𝑚௧ to predict the fund gross alpha in the forthcoming future, as shown by Equation 

(5). They use this prediction in solving their investor problems, as shown in the next sections. 

Notice that in these optimization processes, the unobservable manager ability 𝜃௧ is replaced 

by its observable conditional mean 𝑚௧, updated by a new Wiener process 𝑊ഥ௧, and that 𝑚௧ is 

continuously updated as a function of the dynamic conditional variance 𝛾௧, representing the 

imprecision of the estimate. Hence, investors’ problems become Markovian, which makes the 

problems tractable. 

To make economic sense, we assume a nonnegative 𝑏ଶ , which induces a positive 

correlation (𝑏ଶ𝐵 + 𝐴ଵ𝛾௧) between inferred ability and performance shocks (because 𝐵 and 𝐴ଵ are positive).18 Then, the sensitivity of expected manager ability to innovation shocks in 

 
16 See the requirements of the corresponding theorems in Liptser and Shiryaev (2001a, 2001b). 
17 See Feldman (1992). 
18 This is because a negative 𝑏ଶ induces a negative instantaneous/idiosyncratic correlation, which can give rise 
to negative total correlation. If 𝛾௧ weighs the positive systematic source of correlation, 𝐴ଵ, insufficiently high; 
then, the negative instantaneous/idiosyncratic source of correlation (𝑏ଶ𝐵) dominates. Thus, under these special 
parameter values, which we do not allow here, the dynamics 𝛾௧ may induce correlation, between inferred ability 
and performance shocks, that changes sign over time, resulting in a transient nonmonotonic relation between 
performance shocks and inferred ability even under the linear structure that we analyze in this section. For detailed 
analysis of this nonmonotonicity, see Feldman (1989, Proposition 4). 
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fund gross alpha, 𝜎௠(𝛾௧)  is always positive. In other words, under this setting, a positive 

(negative) shock in fund gross alpha induces an increase (a decrease) in inferred manager ability. 

By Proposition 1c, the conditional distribution of 𝜃௧ is Gaussian. Then, conditional 

distribution of 𝜃௧ is determined by the first two moments, 𝑚௧ and 𝛾௧. As the parameters 𝑎ଵ, 𝑏ଵ , 𝑏ଶ , 𝐴ଵ , and 𝐵  are constants and 𝛾଴  is given, 𝛾௧  is deterministic, as shown in 

Proposition 1b. Consequently, 𝜎௠(𝛾௧) , the sensitivity of expected manager ability to 

innovation shocks in fund gross alpha, is also deterministic but dynamic. However, 𝑚௧  is 

stochastic and its future values are unknown. Therefore, investors know the precision of their 

future estimates of manager ability in advance, although they do not know the future estimates 

of this ability. The fact that the random process (𝜃௧, 𝜉௧), 0 ≤ 𝑡 ≤ 𝑇 is conditionally Gaussian, 

given ℱ௧క , facilitates the generation of the posterior estimate of gross alphas in closed form. 

Taking a closer look at 𝑑𝛾௧, we find that depending on the parameter values, it can be 

positive, negative, or zero; that is, the precision of the future estimates of the manager ability 

level can increase, decrease, or be unchanged for the next small time period. In particular, 

where 𝑏ଶ𝐵 , the instantaneous covariance between 𝑑𝜉௧/𝜉௧  and 𝜃௧ , 19  and/or 𝐴ଵ , the 

sensitivity of the drift of 𝑑𝜉௧/𝜉௧ to 𝜃௧, are sufficiently large (small), 𝑑𝛾௧ would be negative 

(positive). In other words, if the gross alpha and the manager ability are more (less) correlated 

instantaneously and/or the change in the gross alpha is more (less) sensitive to the manager 

ability, then the precision of investors posterior estimates of the manager ability increases 

(decreases). Also, where 𝐵ଶ , the instantaneous variance of 𝑑𝜉௧/𝜉௧ ,20  is sufficiently small 

(large), 𝑑𝛾௧ also is negative (positive). In other words, if the gross alpha process is less (more) 

volatile, then the precision of investors posterior estimates of the manager ability increases 

(decreases). 

Then, depending on parameter values, the dynamics of 𝑑𝛾௧ , induces a 𝛾௧  that 

monotonically increases, decreases, or stays unchanged over time. Consequently, 𝜎௠(𝛾௧) , 

monotonically increases, decreases, or stays unchanged, respectively, over time. 

The dynamics of 𝛾௧ is one of the key differences between our model and Berk and 

 
19 This is because Cov ቀ𝑑𝜃௧, ௗక೟క೟ ቁ = 𝑏ଶ𝐵𝑑𝑡. 
20 This is because Cov ቀௗక೟క೟ , ௗక೟క೟ ቁ = 𝐵ଶ𝑑𝑡. 
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Green’s (2004) model and models subsequent to theirs. In those models, the observable fund 

gross alpha equals the unobservable manager ability, an unknown constant, plus a Gaussian 

noise term. When investors update their estimates of manager ability with a Gaussian prior, the 

precision of their posterior estimates of that ability consistently increases over time as more 

observations are realized. In this case, over time, investors’ estimates of manager ability 

become less sensitive to the innovation shocks in fund returns. In contrast to those studies, our 

study allows the fund manager ability to follow a dynamic process. Within our more general 

structure, the precision of investors’ posterior estimates of manager ability can increase, 

decrease, or stay unchanged over time. Then, in turn, over time, the sensitivity of inferred 

manager ability to the innovation shocks in fund returns can increase, decrease, or stay 

unchanged. These features generate a framework that has stronger theoretical and in empirical 

explanatory and prediction powers, studying the flow-performance relation.21 

2.2 Investors’ Optimization and the Fund Manager’s Optimization 

Using the above filter to re-represent the state space ሼ𝜃௧ , 𝜉௧ሽ in terms of observable 

variables ሼ𝜃௧ ,𝑚௧ , 𝛾௧ሽ, we can solve investors’ and the fund manager’s optimization problems. 

We assume that there are infinitely many small risk-neutral investors in the market and 

that each investor’s investment decision does not affect the fund’s return and size, although all 

investors together do affect the fund’s return and size. An investor’s portfolio return depends 

on three components:  gross alpha, management fee, and fund costs. Berk and Green (2004) 

show that the case where the fund manager actively manages the whole fund and chooses 

his/her management fee 𝑓௧ at each time 𝑡, is equivalent to the case where the fund manager 

chooses the amount of the fund to actively manage at each time 𝑡 under a fixed management 

fee 𝑓. As the latter case is more realistic, we focus on it to conduct our analysis. 

At time 𝑡, fund costs variable 𝐶(𝑞௧௔) is a function of the fund amount that is under 

active management 𝑞௧௔. Out of the 𝑞௧, the total asset managed by the fund, the amount 𝑞௧ −𝑞௧௔ (𝑞௧ − 𝑞௧௔ ≥ 0) is invested in the passive index, earning the passive benchmark portfolio 

return, inducing no fund costs. There are decreasing returns to scale at the fund level, similar 

 
21 We note that, for special parameter values that we do not allow here, the dynamics of 𝛾௧ might induce, for this 
linear version of the model, a transient nonmonotonic time pattern of the diffusion coefficient of ability 𝜎௠(𝛾௧) 
[as can be seen from Equation (7)]. (See also Footnote 18.) 
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to Berk and Green (2004) and Feldman, Saxena, and Xu (2020, 2021). Thus, 𝐶(𝑞௧௔)   is 

increasing and convex in 𝑞௧௔, and we assume that 𝐶(𝑞௧௔) = 𝑐𝑞௧௔ଶ, (8) 

where 𝑐, a positive known constant, is the fund cost sensitivity to size. 

At time 𝑡, let price of the active fund’s asset under management, net of fund costs and 

fees, be 𝑆௧ , 0 ≤ 𝑡 ≤ 𝑇 . Then, the active fund’s net return is 𝑑𝑆௧/𝑆௧ . As we normalize the 

passive benchmark portfolio’s return to zero, the active fund’s net return in excess of the passive 

benchmark is 𝑑𝑆௧/𝑆௧ − 0 = 𝑑𝑆௧/𝑆௧ . Hereafter, we call 𝑑𝑆௧/𝑆௧  the active fund’s 

(instantaneous) net alpha, or, briefly, net alpha. Based on the above discussion, we have, 

 𝑑𝑆௧𝑆௧ = 𝑞௧௔𝑞௧ 𝑑𝜉௧𝜉௧ − 𝐶(𝑞௧௔)𝑞௧ 𝑑𝑡 − 𝑓𝑑𝑡. (9) 

Similar to Berk and Green (2004), we assume that risk-neutral investors supply capital 

with infinite elasticity to funds that have positive excess expected returns. With sufficient 

capital, investors’ fund allocations drive the conditional expectation of fund net alpha to zero 

at each time 𝑡. Thus, we have the following condition: 

 E ൤𝑑𝑆௧𝑆௧ |ℱ௧క൨ = 0,  ∀𝑡. (10) 

Taking conditional expectation on Equation (9) and setting it to zero, we have 

 𝑞௧௔𝑞௧ 𝐴ଵ𝑚௧ − 𝑐𝑞௧௔ଶ𝑞௧ − 𝑓 = 0. (11) 

Rearranging, 

 𝑓𝑞௧ = 𝐴ଵ𝑚௧𝑞௧௔ − 𝑐𝑞௧௔ଶ. (12) 

The fund manager wants to maximize fund profit 𝑓𝑞௧  by choosing 𝑞௧௔ . Then, the 

manager’s problem is 

 max௤೟ೌ 𝑓𝑞௧ = max௤೟ೌ 𝐴ଵ𝑚௧𝑞௧௔ − 𝑐𝑞௧௔ଶ (13) 

subject to 

 0 ≤ 𝑞௧௔ ≤ 𝑞௧ .  (14) 

By solving the investors’ problem and the manager’s problem, we can obtain the 

equilibrium flow-performance relation. 
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2.3 The Flow-performance Relation 

As in Berk and Green (2004), we define the lowest level of conditional expected 

manager ability that makes the fund survive, 𝑚௧ . If 𝑚௧ ≤ 𝑚௧ , the fund receives no 

investments from investors and exits the market. Hereafter, we call 𝑚௧ the survival level. Here 

we assume 𝑚௧ ≥ 0. The reason is that given updated information, the expected instantaneous 

gross alpha accumulated in 𝑑𝑡  is E ቀ𝑑𝜉௧/𝜉௧|ℱ௧కቁ = 𝐴ଵ𝑚௧𝑑𝑡 , with 𝐴ଵ > 0 . If 𝑚௧ < 0 , the 

expected instantaneous gross alpha is negative. With positive fund costs and fees, the expected 

instantaneous net alpha earned by investors in 𝑑𝑡 would be substantially smaller than zero, so 

they would switch their investments to the passive benchmark portfolio. The optimal amount 

under active management and the optimal total asset under management, 𝑞௧௔∗ and 𝑞௧∗, are not 

trivial where 𝑚௧ > 𝑚௧ ≥ 0; otherwise, they are both zero. Also, we assume that the manager 

would set the fee 𝑓 so that 𝑞௧௔∗ ≤ 𝑞௧∗, as Berk and Green (2004) assume. 

To characterize the flow-performance relation using gross alpha as the performance 

measure, we apply Itô's Lemma to calculate 𝑑𝑞௧∗, and divide it by 𝑞௧∗ to get the equilibrium 

percentage fund flow. We then substitute fund gross alpha into the expression, getting the 

desired characterization in the following equation: 

 𝑑𝑞௧∗𝑞௧∗ = 2𝜎௠(𝛾௧)𝑚௧𝐵 ൬𝑑𝜉௧𝜉௧ ൰ + 𝜎௠ଶ (𝛾௧)𝑚௧ଶ𝐵ଶ ൬𝑑𝜉௧𝜉௧ ൰ଶ
+ 2𝑚௧ ቈ(𝑎଴ + 𝑎ଵ𝑚௧) − 𝐴ଵ𝜎௠(𝛾௧)𝑚௧𝐵 ቉𝑑𝑡. (15) 

To characterize the flow-performance relation using net alpha as the performance 

measure, we repeat the previous procedure but substitute fund net alpha, getting the desired 

characterization in the following equation: 
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 𝑑𝑞௧∗𝑞௧∗ = 𝐴ଵ𝜎௠(𝛾௧)𝑓𝐵 ൬𝑑𝑆௧𝑆௧ ൰ + 𝐴ଵଶ𝜎௠ଶ (𝛾௧)4𝑓ଶ𝐵ଶ ൬𝑑𝑆௧𝑆௧ ൰ଶ + 2 ൬𝑎଴𝑚௧ + 𝑎ଵ൰ 𝑑𝑡. 22 (16) 

The following proposition summarizes the flow-performance relations. 

Proposition RN. If 𝑚௧ ≤ 𝑚௧, then the fund receives zero investments from investors. If 𝑚௧ >𝑚௧, then the flow-performance relation has the following characteristics. 

a. Fund flow increases with and is convex23 in fund gross alpha. A higher conditional 

expected manager ability 𝑚௧ , and a higher volatility of fund gross alphas 𝐵  both 

induce lower sensitivity of fund flow to fund gross alpha. Higher sensitivity of expected 

manager ability to innovation shocks in fund gross alpha, 𝜎௠(𝛾௧) , induces higher 

sensitivity of fund flow to fund gross alpha. 

b. When we use the fund net alpha as the measure of fund performance, fund flow still 

increases with and is convex in fund performance, decreases with 𝐵, and increases with 𝜎௠(𝛾௧) . Also, a change in 𝑚௧  does not affect the flow-performance sensitivity. In 

addition, a higher management fee 𝑓  induces lower flow-performance sensitivity, 

whereas higher sensitivity of fund returns to manager ability, 𝐴ଵ, induces higher flow-

performance sensitivity. 

Proof. See the Appendix. 

The intuition of Proposition RNa is as follows. When the fund manager ability is 

expected to be sufficiently high, the fund receives investments from investors. A higher fund 

gross alpha reflects higher manager ability to generate returns for investors, so fund flows are 

positively related to fund gross alphas. Under decreasing returns to scale, it is more difficult to 

improve gross alpha when it is already high; if a manager can do so, this is a signal of extremely 

high ability. Thus, fund flows are more sensitive to fund gross alpha where it is higher, resulting 

in a convex flow-performance relation. Higher sensitivity of expected manager ability to 

 
22 The term ቀௗௌ೟ௌ೟ ቁଶ in Equation (16), in its continuous-time limit (the quadratic variation), is, in equilibrium, ቀ ଶ௙஻஺భ௠೟ቁଶ 𝑑𝑡 [see Equation (A6)], suggesting an instantaneous linear flow-performance sensitivity. However, as 

investors allocate wealth to funds discretely, Equation (16) implies that flow-performance sensitivities are convex. 
23 Please see Footnote 22. 
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innovation shocks in fund gross alpha, 𝜎௠(𝛾௧) , implies that shocks in fund gross alphas 

contain more information about manager ability (thus have more impact on the expectation of 

manager ability), making fund flows more sensitive to fund gross alphas. As 𝜎௠(𝛾௧)  may 

monotonically increase, decrease, or stay unchanged over time, so may the flow-performance 

sensitivity. On the other hand, higher fund gross alpha volatility 𝐵 implies that the fund gross 

alpha contains less information about manager ability, so fund flows are less sensitive to fund 

gross alphas. If investors have already high expectations of the manager’s ability (i.e., 𝑚௧ is 

high), investments to the fund are already large. Given this larger fund size, it is more difficult 

for fund managers to induce a particular percentage fund inflow, so fund flows are less sensitive 

to fund gross alphas. 

The intuition of Proposition RNb is as follows. Both funds net alphas and gross alphas 

reflect information on managers’ abilities, so most of the results in RNa, where performance is 

measured by gross alphas, are maintained in RNb, where performance is measured by net 

alphas. We have that 𝑑𝑆௧/𝑆௧ is a function of 𝑓 and 𝐴ଵ; if any of these parameters changes, 

there is an impact on the coefficient of 𝑑𝑆௧/𝑆௧ shown in Equation (16), and a reverse impact 

on 𝑑𝑆௧/𝑆௧ .24  These two types of impact might cancel each other out; but if the fund size 

adjusts to the changes in 𝑓 and 𝐴ଵ so quickly that 𝑑𝑆௧/𝑆௧ is driven back toward its original 

level, then the changes in 𝑓 and 𝐴ଵ would still affect the flow–net alpha sensitivity. 

If a fund manager charges a higher fixed fee 𝑓, this higher fee induces a smaller fund 

size, thus a smaller fund flow. As the flow-performance relation is convex, fund flows are less 

sensitive to fund net alphas at this smaller fund flow level. Moreover, a higher sensitivity of 

fund gross alpha to manager ability 𝐴ଵ induces a larger fund size, thus a large fund flow. As 

the flow-performance relation is convex, fund flows are more sensitive to fund net alphas at 

this larger fund flow level. In addition, the expected manager ability determines the optimal 

amount of fund that is under active management, which consequently determines fund net 

alphas. Therefore, fund net alphas capture investors’ expectation of manager ability, so the 

conditional expected manager ability 𝑚௧  does not explicitly affect the flow-performance 

sensitivity when using net alphas to measure performance. 

 
24 See the expression of ௗௌ೟ௌ೟  in (A6) in the Appendix. 
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2.4 Relation to Berk and Green (2004) and Brown and Wu (2016) 

Berk and Green (2004) provide one of the earliest discrete-time models that studies the 

flow-performance relation and offers relevant insights. In their model, manager ability is an 

unknown constant that investors and the fund manager learn by observing fund returns. Our 

model nests Berk and Green (2004) in the sense that we can degenerate it to a continuous-time 

analog of it. 

To make the manager ability 𝜃௧, 𝑡 ≥ 0, an unobservable constant 𝜃, we assign the 

following parameter values. In Equation (1), we set 𝑎଴ = 𝑎ଵ = 𝑏ଵ = 𝑏ଶ = 0. In Equation (2), 

we set 𝐴ଵ = 1, i.e., the sensitivity of fund gross alpha to manager ability is one, to further 

simplify our model and match it with Berk and Green (2004)’s. Then, Equations (4), (5), and 

(6) become, with parameter values we set above, 

 𝜎௠(𝛾௧) = 𝛾௧𝐵  (17) 

 𝑑𝑚௧ = 𝛾௧𝐵ଶ (𝑑𝜉௧𝜉௧ − 𝑚௧𝑑𝑡) (18) 

 𝛾௧ = 𝛾଴𝐵ଶ𝐵ଶ + 𝛾଴𝑡. (19) 

The equilibrium flow-performance relation using net alpha as the performance measure 

becomes 

 𝑑𝑞௧∗𝑞௧∗ = 1𝑓 ൬ 𝛾଴𝐵ଶ + 𝛾଴𝑡൰ ൬𝑑𝑆௧𝑆௧ ൰ + 14𝑓ଶ ൬ 𝛾଴𝐵ଶ + 𝛾଴𝑡൰ଶ ൬𝑑𝑆௧𝑆௧ ൰ଶ. (20) 

This result is valid only if 𝑚௧ > 𝑚௧ . Otherwise, the fund receives zero investments and 𝑑𝑞௧∗/𝑞௧∗ = 0. The flow-performance relation in Equation (20) is a continuous-time analog of 

Equation (30) in Berk and Green (2004). We summarize our results of Equation (20) in the 

following proposition, which provides the same insights as those offered by Equation (30) of 

Berk and Green (2004).25 

Proposition BG. Where the manager ability is an unknown constant 𝜃, if 𝑚௧ ≤ 𝑚௧, then the 

fund receives zero investments from investors; if 𝑚௧ > 𝑚௧ , then the flow-performance 

 
25 See the discussion below Equation (30) of Berk and Green (2004). 
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relation has these characteristics. 

a. If the noise in the observed fund returns increases relative to the noise of the prior 

estimate of the manager ability, i.e., 𝐵ଶ increases relative to 𝛾଴, investors learn less 

from the fund returns. Thus, fund flows are less sensitive to net alphas. 

b. As the age of the fund increases, i.e., 𝑡 increases, investors have more observations of 

the fund’s performance and develop a more precise estimate of the manager’s ability. 

Thus, fund flows are less sensitive to (current and future) net alphas. 

c. As the management fee 𝑓 increases, the fund size and the fund flow are smaller. Thus, 

fund flows are less sensitive to net alphas due to the convexity of the flow-performance 

relation. 

Proof. See the Appendix. 

This case of constant unobservable manager abilities is also related to the one in Brown 

and Wu (2016). In particular, if there is only one fund in Brown and Wu (2016)’s model, i.e., 

there is no cross-fund learning, Equations (5) and (6) in Brown and Wu (2016) become our 

Equations (18) and (19). With cross-fund learning within fund families, Brown and Wu (2016) 

also find that sensitivity of fund flows to fund performance decrease monotonically, similar to 

our Proposition BG. 

As the above results show, the constant unobservable manager ability framework 

generates an equilibrium flow-performance relation that is transient, that is, as time passes, 

flow–net alpha sensitivity decreases to zero monotonically. This result does not match with 

empirical data because empirically, even for very old funds, fund flows are still sensitive to 

performance and, as we show later in the empirical section, some funds’ flows are more 

sensitive to fund performance over some periods. Our dynamic unobservable manager ability 

framework does not have this restriction because it allows the equilibrium flow-performance 

sensitivity to increase, decrease, or stay unchanged over time. 

Lynch and Musto (2003) offer insights into the convex flow-performance relation by 

modeling managers’ choice of strategies. They show that past performance tells less about 

future performance if funds discard previous strategies that generate bad results. Thus, flows 

are less sensitive to past performance when it is poor. Similar to Berk and Green (2004), we do 
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not introduce the manager strategy choice structure in our model; instead, the convex flow-

performance relation in Berk and Green (2004) and in our model results from the decreasing 

returns to scale, i.e., the convexity of fund costs in fund size. 

2.5 Mean-Variance Risk-Averse Investors and the Flow-performance Relation 

In studying how investors’ risk aversion affects the equilibrium flow-performance 

relation, we assume that investors are mean-variance risk-averse who maximize their portfolios’ 

instantaneous Sharpe ratios. These investors’ optimal portfolios are the same as those of 

investors with Bernoulli logarithmic preferences, who maximize expected utility [see, for 

example, Feldman (1992)]. Moreover, these portfolios are “growth optimal,” as independently 

discovered by Bernoulli [see Bernoulli (1954)] and the “Kelly Criterion” [see Kelly (1956)]. 

This setting is also similar to the one in Pastor and Stambaugh (2012), and Feldman, Saxena, 

and Xu (2020, 2021). 

Sharpe ratio maximization is a common assumption in modeling mean-variance risk-

averse investors’ behavior. Current literature shows that if a fund manager’s compensation is 

related to his/her portfolio’s Sharpe ratio for a particular period, then that manager has 

incentives for manipulation. To increase (decrease) risk in the later part of the period if the 

return in the early part of the period is low (high), in order to improve the whole period’s Sharpe 

ratio. In our model, as investors act on their own interests, they do not manipulate their 

portfolios’ Sharpe ratios. Our assumption that investors maximize instantaneous portfolio 

Sharpe ratios prevents manipulation in our framework. See, for example, Ingersoll, Spiegel, 

and Goetzmann (2007), and Cvitanic, Lazrak, and Wang (2008). 

Because risk-averse investors, trading off risk and return, arrive at an endogenous 

equilibrium, we need to redefine the model. First, we cannot normalize the passive benchmark 

portfolio return to be zero. Instead, we define the share price of the passive benchmark portfolio 

at time 𝑡, 0 ≤ 𝑡 ≤ 𝑇, as 𝜂௧ . This, in turn, includes redefinitions of net and gross alphas. We 

assume that the passive benchmark portfolio return 𝑑𝜂௧/𝜂௧ follows 

 𝑑𝜂௧𝜂௧ = 𝜇௣𝑑𝑡 + 𝜎௣𝑑𝑊௣,௧ , (21) 

where 𝜇௣ and 𝜎௣ are positive known constants and 𝑊௣,௧ is a Wiener Process. Second, we 

still define 𝑑𝜉௧/𝜉௧ as the fund gross alpha, which follows the process defined in Equations (1) 
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and (2), and define 𝑑𝑆௧/𝑆௧ as the fund net alpha. As the active fund has beta loading of one 

on the passive benchmark portfolio, the fund gross return is 𝑑𝜉௧/𝜉௧ +  𝑑𝜂௧/𝜂௧ and the fund 

net return is 𝑑𝑆௧/𝑆௧ +  𝑑𝜂௧/𝜂௧. Also, we assume that the risk source of the benchmark return, 𝑊௣,௧, is independent of that of gross alphas, so 

 𝑑𝑊௣,௧𝑑𝑊ഥ௧ = 0. (22) 

Third, to simplify our discussion, we normalize the risk-free rate to zero.26 All other terms are 

the same as before. 

An investor’s problem, then, is to maximize the portfolio’s instantaneous Sharpe ratio: 

 max௪೟ E ൤𝑑𝑝௧𝑝௧ |ℱ௧క൨ටVar ൤𝑑𝑝௧𝑝௧ |ℱ௧క൨, (23) 

subject to 

 0 ≤ 𝑤௧ ≤ 1, (24) 

where 𝑤௧ is the weight allocation to the active fund,27 𝑝௧ is the portfolio’s value, and 𝑑𝑝௧/𝑝௧ 
is the portfolio’s instantaneous return. 

The investor’s portfolio’s instantaneous return is 

 𝑑𝑝௧𝑝௧ = 𝑤௧ ൬𝑑𝑆௧𝑆௧ + 𝑑𝜂௧𝜂௧ ൰ + (1 −𝑤௧)𝑑𝜂௧𝜂௧ = 𝑤௧ 𝑑𝑆௧𝑆௧ + 𝑑𝜂௧𝜂௧ . (25) 

Solving the investor's problem, we have the optimal weight allocation 𝑤௧∗. As investors 

face the same risk-return tradeoff and have the same objective function, they all make the same 

optimal decision of 𝑤௧∗. We define the part of the total wealth of all investors that is allocated 

to financial assets (i.e., allocated to the active fund and the passive benchmark portfolio) as 𝑉௧, 𝑉௧ ∈ (0, +∞), 0 ≤ 𝑡 ≤ 𝑇. In reality, 𝑉௧ not only depends on the returns from financial assets, 

but also depends on production activities, research and development expenditures, 

consumptions, taxes, and many other aspects of the economy that we do not model here. Thus, 

to simplify our analysis, we assume that 𝑉௧ is exogenous to both investors and managers. Here, 

the amount of wealth that is allocated to the fund or fund size is 𝑞௧ = 𝑤௧∗𝑉௧. As in the risk-

neutral case, we can write the fund manager's profit as a function of 𝑞௧௔, i.e., 𝑔(𝑞௧௔), where 𝑔 

 
26 Alternatively, we can regard ௗఎ೟ఎ೟  as the passive benchmark portfolio return in excess of the risk-free rate. 
27 As the risk-return tradeoff is the same for all investors, they make the same optimal decision in equilibrium, so 
we do not differentiate 𝑤௧ across investors to simplify the notations. 
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is some function. 

The manager’s problem is, then, 

 max௤೟ೌ 𝑓𝑞௧ = max௤೟ೌ 𝑔(𝑞௧௔). (26) 

subject to 

 0 ≤ 𝑞௧௔ ≤ 𝑞௧ . (27) 

Therefore, as in Berk and Green (2004), in our equilibrium the fund manager’s optimal profit 

does not depend on the fee set by the manager. 

Substituting the equilibrium values 𝑞௧∗  and 𝑞௧௔∗ into the fund net alpha in Equation 

(9), we have 

 𝑑𝑆௧𝑆௧ = 𝑓𝐵ଶ𝜇௣𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ 𝑑𝑡 + 2𝑓𝐵𝐴ଵ𝑚௧ 𝑑𝑊ഥ௧ . (28) 

We can see that on average, the fund net alpha increases with the management fee, fund gross 

alpha volatility, and benchmark mean return because the drift term on the right-hand side of 

Equation (28) increases with 𝑓, 𝐵, and 𝜇௣. On the other hand, the fund net alpha, on average, 

decreases with the fund’s cost sensitivity to size and benchmark volatility because the drift term 

decreases with 𝑐 and 𝜎௣ଶ. More importantly, the result in Equation (28) shows that expected 

fund net alpha (conditional on current information) is positive where investors are risk-averse 

because all the parameters in the drift term are positive. This is because, compared with the 

passive benchmark portfolio, the active fund is a riskier asset, so it has to provide a higher 

return to induce investments. This result is consistent with the one in Pastor and Stambaugh 

(2012) and Feldman, Saxena, and Xu (2020, 2021). 

Analysis similar to the one in the risk-neutral case, yields the equilibrium flow-

performance relation using gross alpha as the performance measure as 

 𝑑𝑞௧∗𝑞௧∗ = 2𝜎௠(𝛾௧)𝑚௧𝐵 ൬𝑑𝜉௧𝜉௧ ൰ + 𝜎௠ଶ (𝛾௧)𝑚௧ଶ𝐵ଶ ൬𝑑𝜉௧𝜉௧ ൰ଶ
+ 2𝑚௧ ቈ(𝑎଴ + 𝑎ଵ𝑚௧) − 𝐴ଵ𝜎௠(𝛾௧)𝑚௧𝐵 ቉𝑑𝑡 + 𝑋௧, 

(29) 

where 𝑋௧  contains all the terms related to 𝑑𝑉௧  and (𝑑𝑉௧)ଶ . As we assume that 𝑉௧  is 

exogenous to the market, thus independent of 𝑚௧ at each time 𝑡, we assume 𝑑𝑉௧𝑑𝑚௧ = 0. 
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We note that the above result is valid only if 𝑚௧ > 𝑚௧. If 𝑚௧ ≤ 𝑚௧, then 𝑑𝑞௧∗/𝑞௧∗ = 0. 

Analysis similar to the one in the risk-neutral case, yields the equilibrium flow-

performance relation using net alpha as the performance measure: 

 𝑑𝑞௧∗𝑞௧∗ = 𝐴ଵ𝜎௠(𝛾௧)𝑓𝐵 ൬𝑑𝑆௧𝑆௧ ൰ + 𝐴ଵଶ𝜎௠ଶ (𝛾௧)4𝑓ଶ𝐵ଶ ൬𝑑𝑆௧𝑆௧ ൰ଶ + 𝑌௧𝑑𝑡 + 𝑋௧ , (30) 

where 

 𝑌௧ = 2𝑎଴𝑚௧ + 2𝑎ଵ − 𝐴ଵ𝜎௠(𝛾௧)𝐵ଶ𝜇௣𝐵൫𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ൯. (31) 

Here both 𝑋௧ and 𝑌௧ are independent of either 𝑑𝜉௧/𝜉௧ or 𝑑𝑆௧/𝑆௧. 
From Equation (30), we can see that investors’ risk aversion does not affect the flow-

performance sensitivity whether the performance is measured by gross alphas or net alphas. 

Investors’ risk aversion affects only the components of the fund flow that is unrelated to fund 

performance, as shown in Equations (30) and (31). The intuition is that investors’ risk aversion 

affects the amount of the investment allocated to the risky active fund 𝑞௧∗, so it affects the 

sensitivity of the dollar amount of the fund flow 𝑑𝑞௧∗ to performance. However, when the fund 

flow is calculated as percentage flow 𝑑𝑞௧∗/𝑞௧∗, the effects of risk-aversion cancel out. Therefore, 

the flow-performance sensitivity where investors are mean-variance risk-averse is similar to 

the one where investors are risk-neutral. The following proposition summarizes the results in 

this section. 

Proposition RA. Mean-variance risk-averse investors, who maximize their portfolios’ 

instantaneous Sharpe ratios, induce equilibrium fund flow-performance sensitivity of the same 

characteristics as risk-neutral investors do. 

Proof. See the Appendix. 

2.6 Nonlinear Filtering Framework and the Flow-performance Relation 

Suppose that the ability and gross alpha processes are more general in the sense that 

their parameters, rather than being constants, change as functions of time and fund (gross) share 

price levels. The state equations, then, follow the nonlinear system, 

 𝑑𝜃௧ = [𝑎଴(𝑡, 𝜉௧) + 𝑎ଵ(𝑡, 𝜉௧)𝜃௧]𝑑𝑡 + 𝑏ଵ(𝑡, 𝜉௧)𝑑𝑊ଵ,௧ + 𝑏ଶ(𝑡, 𝜉௧)𝑑𝑊ଶ,௧ , (32) 
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 𝑑𝜉௧𝜉௧ = 𝐴ଵ(𝑡, 𝜉௧)𝜃௧𝑑𝑡 + 𝐵(𝑡, 𝜉௧)𝑑𝑊ଶ,௧ , (33) 

with initial conditions 𝜃଴ and 𝜉଴, respectively. The parameters 𝑎଴(𝑡, 𝜉௧), 𝑎ଵ(𝑡, 𝜉௧), 𝑏ଵ(𝑡, 𝜉௧), 𝑏ଶ(𝑡, 𝜉௧) , 𝐴ଵ(𝑡, 𝜉௧) , and 𝐵(𝑡, 𝜉௧)  are functions of 𝑡  and 𝜉௧ . Similar to the linear case, in 

order to make economic sense, we assume that 𝐴ଵ(𝑡, 𝜉௧) > 0 (otherwise the ability becomes 

a “disability”), and for simplicity, and without loss of generality, we assume 𝐵(𝑡, 𝜉௧) > 0. The 

definitions of other variables are the same as before. Then, the following proposition describes 

how the manager and investors form and update their estimates of 𝜃௧ within this nonlinear 

filtering framework. 

The intuition regarding our ability to solve this nonlinear system and the nature of its 

equilibrium is as follows. Because time and price levels are observable, at each time point the 

parameters of the ability distribution conditional on realization are known and the distribution 

is Gaussian. In the next instant, however, realizations stochastically change. Consequently, the 

conditional distribution parameters stochastically change as well, and the conditional 

distribution is a “new” Gaussian distribution with different moments. Thus, the moments of the 

ability-conditional distributions evolve stochastically. We can think of the equilibrium here, 

relative to one in the linear case, as an equilibrium that stochastically travels among the 

stochastic equilibria of the type that we establish above. We can now state the following 

propositions. 

Proposition 2. 

a. Let ℱ௧కబ,ௐഥ , 0 ≤ 𝑡 ≤ 𝑇, be the 𝜎-algebras generated by ሼ𝜉଴, 𝑊ഥ௦, 0 ≤ 𝑠 ≤ 𝑡ሽ. Then 

 𝑊ഥ௧ = න 𝑑𝜉௦/𝜉௦ − 𝐴ଵ(𝑡, 𝜉௧)𝑚௦𝑑𝑠𝐵(𝑡, 𝜉௧)௧
଴  (34) 

is a Wiener process with respect the filtration ቄℱ௧కቅ଴ஸ௧ஸ், with 𝑊ഥ଴ = 0; and the 𝜎-

algebras ℱ௧క and ℱ௧కబ,ௐഥ  are equivalent. 

b. 𝑊ഥ௧  innovates the (observable) conditional mean 𝑚௧  of the unobservable fund 

manager ability 𝜃௧  to beat the benchmark. The variables 𝑚௧ , 𝜉௧ , and 𝛾௧  are the 

unique, continuous, ℱ௧క-measurable solutions of the system of equations 
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 𝑑𝑚௧ = [𝑎଴(𝑡, 𝜉௧) + 𝑎ଵ(𝑡, 𝜉௧)𝑚௧]𝑑𝑡 + 𝜎௠(𝛾௧)𝑑𝑊ഥ௧ , (35) 

 𝑑𝜉௧𝜉௧ = 𝐴ଵ(𝑡, 𝜉௧)𝑚௧𝑑𝑡 + 𝐵(𝑡, 𝜉௧)𝑑𝑊ഥ௧ , (36) 

 𝑑𝛾௧ = [𝑏ଵଶ(𝑡, 𝜉௧) + 𝑏ଶଶ(𝑡, 𝜉௧) + 2𝑎ଵ(𝑡, 𝜉௧)𝛾௧ − 𝜎௠ଶ (𝛾௧)]𝑑𝑡, (37) 

where 

 𝜎௠(𝛾௧) ≜ 𝑏ଶ(𝑡, 𝜉௧)𝐵(𝑡, 𝜉௧) + 𝐴ଵ(𝑡, 𝜉௧)𝛾௧𝐵(𝑡, 𝜉௧) , (38) 

with initial conditions 𝜉଴, 𝑚଴, and 𝛾଴. 

c. The random process (𝜃௧, 𝜉௧), 0 ≤ 𝑡 ≤ 𝑇 is conditionally Gaussian given ℱ௧క. 

Proof. Theorem 8.1 of Liptser and Shiryaev (2001a) and Theorem 12.5 of Liptser and Shiryaev 

(2001b) jointly provide the proof of Proposition 2a. Theorem 12.5 of Liptser and Shiryaev 

(2001b) provides the proof of Proposition 2b. Theorem 11.1 of Liptser and Shiryaev (2001b) 

provides the proof of Proposition 2c. We also assume that the technical requirements to prove 

the theorems over the period 0 ≤ 𝑡 ≤ 𝑇 are satisfied. 

Again, to make economic sense, we assume a nonnegative 𝑏ଶ(𝑡, 𝜉௧), which ensures a 

positive 𝜎௠(𝛾௧)  in Equation (38). That is, a positive (negative) shock in fund gross alpha 

induces an increase (a decrease) in inferred manager ability. 

Then, we have the equilibrium results stated in the following proposition. 

Proposition NL. If the fund manager’s ability and fund gross alpha follow the nonlinear system 

represented by Equations (32) and (33), the equilibrium flow-performance relations are as 

follows. 

a. If investors are risk-neutral, the equilibrium flow-performance relation using gross 

alpha as the performance measure is 

 𝑑𝑞௧∗𝑞௧∗ = 2𝜎௠(𝛾௧)𝑚௧𝐵(𝑡, 𝜉௧) ൬𝑑𝜉௧𝜉௧ ൰ + 𝜎௠ଶ (𝛾௧)𝑚௧ଶ𝐵ଶ(𝑡, 𝜉௧) ൬𝑑𝜉௧𝜉௧ ൰ଶ + 2𝑚௧ 
× ቈ𝑎଴(𝑡, 𝜉௧) + 𝑎ଵ(𝑡, 𝜉௧)𝑚௧ − 𝐴ଵ(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝑚௧𝐵(𝑡, 𝜉௧) ቉ 𝑑𝑡, (39) 

and the equilibrium flow-performance relation using net alpha as the performance 

measure is 

 𝑑𝑞௧∗𝑞௧∗ = 𝐴ଵ(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝑓𝐵(𝑡, 𝜉௧) ൬𝑑𝑆௧𝑆௧ ൰ (40) 
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+𝐴ଵଶ(𝑡, 𝜉௧)𝜎௠ଶ (𝛾௧)4𝑓ଶ𝐵ଶ(𝑡, 𝜉௧) ൬𝑑𝑆௧𝑆௧ ൰ଶ + 2 ቈ𝑎଴(𝑡, 𝜉௧)𝑚௧ + 𝑎ଵ(𝑡, 𝜉௧)቉ 𝑑𝑡. 
b. If investors are risk-averse, the equilibrium flow-performance relation using gross 

alpha as the performance measure is 

 𝑑𝑞௧∗𝑞௧∗ = 2𝜎௠(𝛾௧)𝑚௧𝐵(𝑡, 𝜉௧) ൬𝑑𝜉௧𝜉௧ ൰ + 𝜎௠ଶ (𝛾௧)𝑚௧ଶ𝐵ଶ(𝑡, 𝜉௧) ൬𝑑𝜉௧𝜉௧ ൰ଶ + 2𝑚௧ 
× ቈ𝑎଴(𝑡, 𝜉௧) + 𝑎ଵ(𝑡, 𝜉௧)𝑚௧ − 𝐴ଵ(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝑚௧𝐵(𝑡, 𝜉௧) ቉ 𝑑𝑡 + 𝑋௧ (41) 

where 𝑋௧ contains all the terms related to 𝑑𝑉௧ and (𝑑𝑉௧)ଶ, and the equilibrium flow-

performance relation using net alpha as the performance measure is 

 𝑑𝑞௧∗𝑞௧∗ = 𝐴ଵ(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝑓𝐵(𝑡, 𝜉௧) ൬𝑑𝑆௧𝑆௧ ൰ + 𝐴ଵଶ(𝑡, 𝜉௧)𝜎௠ଶ (𝛾௧)4𝑓ଶ𝐵ଶ(𝑡, 𝜉௧) ൬𝑑𝑆௧𝑆௧ ൰ଶ + 𝑌௧𝑑𝑡+ 𝑋௧ (42) 

where 

 𝑌௧ = 2𝑎଴(𝑡, 𝜉௧)𝑚௧ + 2𝑎ଵ(𝑡, 𝜉௧) − 𝐴ଵ(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝐵ଶ(𝑡, 𝜉௧)𝜇௣𝐵(𝑡, 𝜉௧)൫𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉௧𝜎௣ଶ൯. (43) 

Proof. Similar to those in the previous sections. 

The results of this nonlinear filtering framework are different from those of the linear 

filtering framework in the following ways. First, the estimation precision of manager ability, 𝛾௧, is stochastic. Second, the sensitivity of expected manager ability to innovation shocks in 

fund gross alpha, 𝜎௠(𝛾௧), is stochastic. Third, these stochastic parameters yield more complex 

patterns of equilibrium flow-performance sensitivity over time. In this framework, 𝛾௧, 𝜎௠(𝛾௧), 

and the equilibrium flow-performance sensitivity can change nonmonotonically over time.28 

This is one of the key differences between our results and those of Berk and Green (2004) and 

subsequent models, where flow-performance sensitivity decreases, or changes monotonically, 

over time. Consequentially, this framework, which has no added parameters but allows 

 
28 Nonmonotonic such patterns arise naturally, whereas within the linear setup that we studied earlier, transient 
such patterns may arise only under special parameters values. These special parameter values induce negative 
correlation between performance and inferred abilities. To make economic sense, and for brevity, we do not allow 
these parameter values. See Footnotes 18 and 21. 
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nonlinear structures, better explains empirical nonmonotonic flow-performance relations. 

3 Simulation Results 

We use simulation to illustrate our equilibrium flow-performance relation under a case 

of constant unobservable manager ability [as in Berk and Green (2004), Case One)], a case of 

dynamic unobservable manager ability with linear filtering (Case Two), and a case of dynamic 

unobservable manager ability with nonlinear filtering (Case Three). We assume risk-neutral 

investors in this illustration. We discretize our continuous-time processes into discrete-time 

processes, setting 𝑑𝑡 = Δ𝑡 to be one month and 𝑑𝑊ഥ௧ = Δ𝑊ഥ௧ to follow a normal distribution 

of mean zero and variance Δ𝑡. 
In our simulation, we use some statistics from our sample of the active managed equity 

mutual funds in the U.S. market. A detailed description of the sample is in the data section of 

our empirical study. In the sample, the average annual fund expense, including the 12b-1 fee, 

is 1.31% ; the average monthly net alpha is −0.04% ; and the standard deviation of the 

monthly net return is 5.43%. Then, we set our model’s parameters as follows. Our monthly 

fee 𝑓 is 1.31%/12 = 0.11% (which is approximated by the average monthly fund expense); 

our initial expected management ability 𝑚଴  is 1.31% − 0.04% = 1.27%  (which is 

approximated by the average fund gross alpha in our sample); our gross fund share price 𝜉଴ =1 ; and our instantaneous volatility of gross alpha 𝐵  is 5.43%  (which is the same as the 

sample standard deviation of the monthly net return). We set other parameters under three cases: 

• Case One:  𝑎଴ = 0, 𝑎ଵ = 0, 𝐴ଵ = 1, 𝑏ଵ = 0, 𝑏ଶ = 0, 𝛾଴ = 0.0006; 

• Case Two: 𝑎଴ = 0.005 , 𝑎ଵ = −0.001 , 𝐴ଵ = 0.01 , 𝑏ଵ = 0.06 , 𝑏ଶ = 0.01 , 𝛾଴ =0.0001; 

• Case Three: 𝑎଴ = 0.005 , 𝑎ଵ = −0.001 , 𝐴ଵ = 0.55 + 0.001ln(1 + 𝜉௧) , 𝑏ଵ =0.0005 + 0.000012𝑡 + 0.000004ln(1 + 𝜉௧), 𝑏ଶ = 0.0001, 𝛾଴ = 0.0006. 

We then simulate 𝑚௧, 𝛾௧, 𝜎௠(𝛾௧), fund net alphas Δ𝑆௧/𝑆௧, and fund flow Δ𝑞௧∗/𝑞௧∗, 
for 240 months (20 years). We plot the results of 𝜎௠(𝛾௧) in the three cases, from Month 13 to 

Month 240, in Figure 1. Also, in Figure 1, we use blue circles to plot the values of fund flows 

and fund net alphas from Month 25 to Month 48, green stars to plot these values from Month 

85 to Month 108, and red pluses to plot these values from Month 217 to Month 240. 
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In Case One, the manager ability is an unobservable constant. This is the case in Berk 

and Green (2004), where the estimation of manager ability becomes more and more precise 

over time, i.e., 𝛾௧ decreases over time towards its static state value zero. In this case, 𝜎௠(𝛾௧) 

is deterministic and decreasing over time. With more precise ability estimates, investors rely 

less and less on realized performance to infer ability; consequently, the conditional expected 

manager ability is less and less sensitive to shocks to gross alphas. As a result, the flow–net 

alpha sensitivity decreases over time. 

In Case Two, the unobservable manager ability is dynamic under a linear filtering 

framework. We choose the value of 𝛾଴ to be below the steady state value of 𝛾௧, and over time, 𝛾௧  increases towards its steady state value. In this case, 𝜎௠(𝛾௧)  is deterministic and 

increasing over time, i.e., the conditional expected manager ability is more and more sensitive 

to new shocks to gross alphas. Consequently, the flow–net alpha sensitivity increases over time. 

If we set the value of 𝛾଴ to be above the steady state value of 𝛾௧, then 𝛾௧ decreases over time 

towards its steady state value. Consequently, 𝜎௠(𝛾௧) decreases over time and the flow–net 

alpha sensitivity decreases over time. 

In Case Three, the unobservable manager ability is dynamic under a nonlinear filtering 

framework. In this case, the static state value of 𝛾௧ moves over time. Due to parameter values, 𝛾௧  is above its steady state value in the earlier months and below it in the later months. 

Consequently, 𝛾௧  decreases toward steady state values in the earlier months and increases 

towards new steady state values in the later months. As a result, 𝜎௠(𝛾௧) is stochastic. It first 

decreases over time and then increases, i.e., the conditional expected manager ability is less 

and less sensitive to new shocks to gross alphas over the early months and then becomes more 

and more sensitive over the later months. Eventually, the flow–net alpha sensitivity first 

decreases and then increases. 

Different from the results in Berk and Green (2004) that the flow–net alpha sensitivity 

decreases monotonically over time, our results show that the flow–net alpha sensitivity can 

change with different patterns over time, and these new patterns result from the dynamics of 

manager abilities. In reality, we expect that the pattern of 𝜎௠(𝛾௧) over time and that of the 

flow–net alpha sensitivity may be complex. 
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4 Empirical Study 

Numerous papers have studied empirically flow-performance relations under different 

contexts [see, for example, Bollen (2007), Brown and Wu (2016), Chen, Goldstein, and Jiang 

(2010), Huang, Wei, and Yan (2007), Lynch and Musto (2003), and Spiegel and Zhang (2013)]. 

The purpose of our empirical analysis is to examine whether the empirical findings support a 

framework of dynamic unobservable manager abilities with nonmonotonic precisions (a 

framework which must be nonlinear) or a framework with monotonic precisions (a framework 

which must be linear). 

Based on our theoretical results, if manager abilities’ precisions are constant or 

monotonic, flow-performance sensitivities change monotonically over time. If managers’ 

abilities are dynamic, flow-performance sensitivities can have different patterns over time. 

How the flow-performance sensitivity changes over time implies whether the fund manager 

abilities’ precisions are constant, monotonic, or nonmonotonic. We test this sensitivity below. 

4.1 Methodology 

We first analyze the flow-performance relation using methods common in the literature, 

specifically cited below. The model we use is 

 𝐹𝑙𝑜𝑤௜,௧ = 𝛽଴ + 𝛽ଵ𝛼௜,௧ିଵ + 𝛽ଶ𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ + 𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ + 𝜀௜,௧ , (44) 

where 

 𝐹𝑙𝑜𝑤௜,௧ = 𝑇𝑁𝐴௧ − 𝑇𝑁𝐴௧ିଵ(1 + 𝑅𝑒𝑡௧)𝑇𝑁𝐴௧ିଵ . (45) 

Here, 𝑖 is the fund index and 𝑡 is the time (month) index. The dependent variable 𝐹𝑙𝑜𝑤௜,௧ is 

the (percentage) fund flow, 𝑇𝑁𝐴௧ is the fund’s total net asset under management, 𝑅𝑒𝑡௧ is the 

fund net return, and 𝛼௜,௧  is the fund net alpha to measure fund performance. Following 

Feldman, Saxena, and Xu (2020, 2021), we estimate the following style-matching model: 

 𝑅𝑒𝑡௧ = 𝛼௜,௧ + 𝑏௜,௧ଵ 𝐹௧ଵ + 𝑏௜,௧ଶ 𝐹௧ଶ + ⋯+ 𝑏௜,௧௡ 𝐹௧௡, (46) 

where 𝐹௧ଵ through 𝐹௧௡ are the net returns of tradable index funds of different asset classes. 

We use tradable index funds as factors in this model because index funds are intended to 

represent the next-best investment opportunity available to investors as a tradable asset [Berk 
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and van Binsbergen (2015)]. Among 𝐹௧ଵ through 𝐹௧௡, we also allow for a “risk-free fund” by 

including the CRSP Fama-French risk-free rate as a potential benchmark. We perform this 

analysis on a rolling basis using returns from months (𝑡 −  60) to (𝑡 −  1) to avoid look-

ahead bias. In particular, we estimate coefficients 𝑏௜,௧ଵ  to 𝑏௜,௧௡  to minimize the variance of the 

residual using observations in the previous 60 months and then subtract 𝑅𝑒𝑡௧  by 𝑏௜,௧ଵ 𝐹௧ଵ +𝑏௜,௧ଶ 𝐹௧ଶ + ⋯+ 𝑏௜,௧௡ 𝐹௧௡  to calculate 𝛼௜,௧ . 𝐷௜,௧  is a dummy variable; and 𝐷௜,௧ = 1  if 𝛼௜,௧ ≥ 0 , 

and 0  otherwise. A positive 𝛽ଶ  implies that the flow–net alpha sensitivity, where the net 

alphas are positive, is higher than the one where the net alphas are negative, so a positive 𝛽ଶ 

implies convexity in the flow–net alpha relation. 

The coefficients of the control variables are represented by the vector 𝛾. We follow the 

literature [e.g., Brown and Wu (2016), Chen, Goldstein, and Jiang (2010) and Spiegel and 

Zhang (2013)] to choose control variables in the vector 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧, listed below. 

• 𝐸𝑥𝑝𝑒𝑛𝑠𝑒௜,௧:  fund expense ratio as of the most recently completed fiscal year, which 

includes 12b-1 fees; 

• 𝐹𝑙𝑜𝑤௜,௧ିଵ:  the lagged fund flow; 

• 𝑉𝑜𝑙௜,௧:  fund volatility, calculated as the standard deviation of the fund’s net returns in 

the prior 12 months; 

• ln𝐴𝑔𝑒௜,௧ିଵ :  the lagged natural logarithm of fund age, which is calculated as the 

number of months since the inception of the oldest share class; 

• ln𝑇𝑁𝐴௜,௧ିଵ :  the lagged natural logarithm of the fund’s total net assets under 

management; 

• 𝛼௜,௧ିଵ ∗ ln𝑇𝑁𝐴௜,௧ିଵ :  the interaction term of lagged fund net alpha and the lagged 

natural logarithm of the fund’s total net assets under management, as larger funds might 

experience less volatile fund flows, holding other factors unchanged; 

• 𝐹𝑎𝑚𝐴𝑙𝑝ℎ𝑎௜,௧ିଵ:  lagged fund family net alpha, calculated as the weighted average of 

the family members’ net alphas excluding the net alphas of fund 𝑖, where the lagged 
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net asset under management is the weight; 

• ln𝐹𝑎𝑚𝑆𝑖𝑧𝑒௜,௧ିଵ:  the lagged natural logarithm of the family size, which is the number 

of coexisting active equity-only funds in the family; 

• fund dummies and year dummies. 

Our main purpose is to find out whether flow-performance relations change over time. 

Thus, we require the funds in our sample to have sufficiently long lives, i.e., at least 15 years 

of fund flow and net alpha observations. We divide a fund’s time-series observations of fund 

flows and net alphas into four periods:  Period 0: the first 5 years of observations in the sample, 

Period 1: the second 5 years, Period 2: the third 5 years, and Period 3: the remaining years of 

observations. To analyze how the flow–net alpha sensitivity changes over time, we use the 

model 

 𝐹𝑙𝑜𝑤௜,௧ = 𝛽଴ + 𝛽ଵ𝛼௜,௧ିଵ + 𝛽ଶ𝛼௜,௧ିଵ ∗ 𝑀1௜,௧ + 𝛽ଷ𝛼௜,௧ିଵ ∗ 𝑀2௜,௧+ 𝛽ସ𝛼௜,௧ିଵ ∗ 𝑀3௜,௧ + 𝛽ହ𝑀1௜,௧ + 𝛽଺𝑀2௜,௧ + 𝛽଻𝑀3௜,௧+ 𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ + 𝜀௜,௧ , (47) 

where 𝑀1௜,௧ , 𝑀2௜,௧ , and 𝑀3௜,௧  are 1 if the time is in Period 1, Period 2, and Period 3, 

respectively, and 0 otherwise. In this model, Period 0 is the base group. We focus on 𝛽ଶ, 𝛽ଷ, 𝛽ସ , 𝛽ଷ − 𝛽ଶ , 𝛽ସ − 𝛽ଷ , and 𝛽ସ − 𝛽ଶ , which measure the differences in the flow–net alpha 

sensitivity between Periods 0 and 1, between Periods 0 and 2, between Periods 0 and 3, between 

Periods 1 and 2, between Periods 2 and 3, and between Periods 1 and 3, respectively. 

To analyze how the convexity of the flow-performance relation changes over time, we 

use the model 

 𝐹𝑙𝑜𝑤௜,௧ = 𝛽଴ + 𝛽ଵ𝛼௜,௧ିଵ + 𝛽ଶ𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ + 𝛽ଷ𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ ∗ 𝑀1௜,௧+ 𝛽ସ𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ ∗ 𝑀2௜,௧ + 𝛽ହ𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ ∗ 𝑀3௜,௧+ 𝛽଺𝛼௜,௧ିଵ ∗ 𝑀1௜,௧ + 𝛽଻𝛼௜,௧ିଵ ∗ 𝑀2௜,௧ + 𝛽଼𝛼௜,௧ିଵ ∗ 𝑀3௜,௧+ 𝛽ଽ𝑀1௜,௧ + 𝛽ଵ଴𝑀2௜,௧ + 𝛽ଵଵ𝑀3௜,௧ + 𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ + 𝜀௜,௧ . (48) 

We focus on 𝛽ଷ, 𝛽ସ, 𝛽ହ 𝛽ସ − 𝛽ଷ, 𝛽ହ − 𝛽ସ, and 𝛽ହ − 𝛽ଷ, which measure the differences in 

the convexity of the flow–net alpha relation, between Periods 0 and 1, between Periods 0 and 

2, between Periods 0 and 3, between Periods 1 and 2, between Periods 2 and 3, and between 
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Periods 1 and 3, respectively. 

4.2 Data 

We collect our active fund data from the survivor-bias-free mutual fund database of the 

Center for Research in Security Prices (CRSP). Our sample period is from January 1995 to 

December 2019, and monthly data is used.29 We first exclude index funds, variable annuity 

funds, and exchange-traded funds (ETFs). Then, we choose U.S. domestic equity-only mutual 

funds by using the Lipper fund classification.30 This equity fund filter is similar to the one in 

Brown and Wu (2016), and the one in Feldman, Saxena, and Xu (2020), which is also close to 

the one in Pastor, Stambaugh, and Taylor (2015).31 Because we use a 5-year rolling window 

to estimate fund net alphas, and because we require funds to have a long time-series of 

observations of fund flows and net alphas, i.e., at least 15 years, to analyze how the flow–net 

alpha sensitivity changes over time, we include the funds that have at least 20 years of 

observations. We also require each of our equity funds to have fewer than 5 years’ missing 

observations between the first observation and the last one, so that the style-matching model 

can perform well. Briefly, our sample includes long-living active equity-only funds. 

All fund returns are net of management expenses, 12b-fees, and front and rear load fees. 

We also obtain funds’ net assets under management and the expense ratio from CRSP. While 

we analyze fund-level data, the CRSP data is offered at the fund share class-level. We use the 

MFLINKS database to aggregate fund share class-level information to fund-level information. 

In particular, we calculate funds’ total net assets under management by summing up its share 

classes’ net assets under management, and calculate fund net returns and fund expenses as 

weighted averages of its share classes’ net returns and fund expenses, respectively, using the 

lagged net assets under management as weights. Fund age is the number of months since the 

inception of the oldest share class. Fund family is identified by the management company 

 
29 Information on the Lipper fund classification and most of the information on the management company code 
to identify fund families begins in December of 1999. As we use a five-year rolling widow to estimate fund net 
alpha, we start our sample from January 1995 so that our tests can include fund data starting from January 2000. 
30 We use funds in the following Lipper classes: Large-Cap Core, Large-Cap Growth, Large-Cap Value, Mid-Cap 
Core, Mid-Cap Growth, Mid-Cap Value, Small-Cap Core, Small-Cap Growth, Small-Cap Value, Multi-Cap Core, 
Multi-Cap Growth, and Multi-Cap Value. If a fund has a missing Lipper class in some months, we use its Lipper 
class in the previous months; if there is no information on a Lipper class in the previous months, we use its Lipper 
class in the later months. 
31 See the discussion in the appendix regarding the equity fund filter in Feldman, Saxena, and Xu (2020a). 
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code.32 The fund family net alpha is calculated as the weighted average of the family members’ 

net alphas, excluding the net alphas of the fund under consideration, where the lagged net asset 

under management is the weight.33  Fund family size is calculated as the number of active 

equity-only funds in the family. 

We also obtain data on index funds from CRSP and use the MFLINKS database to 

aggregate fund share class-level information to fund-level information for the index funds 

similar to what we do for the active equity-only funds. These index funds, which we use as 

benchmark factors to estimate fund net alphas in the style-matching model in (46), include a 

Large-Cap Core fund (Schwab 1000 Index Fund), a Large-Cap Growth fund (Vanguard Growth 

Index Fund), a Large-Cap Value fund (Vanguard Value Index Fund), a Small-Cap Core fund 

(Vanguard Small-Cap Index Fund), and a Multi-Cap Core fund (Vanguard Total Stock Market 

Index Fund). We require index funds to have no missing observations in our sample period. 

The CRSP Fama-French risk-free rate is also used as one of the benchmark factors to estimate 

fund net alphas. 

Our sample contains 1,555 actively managed U.S. domestic equity-only mutual funds, 

and 1,528 of them belong to a fund family with more than one funds. This shows that the 

number of funds in our sample is not far away from the one of Brown and Wu (2016)34 

although we include only long-living funds. Also, the numbers of observations in our tests are 

close to triple of theirs, as we have a longer sample period. 

4.3 Empirical Results 

Table 1 reports the summary statistics. In our sample, the fund net alpha, on average, is 

close to zero and its distribution tends to be symmetric. The fund flow is skewed to the right, 

as its mean is larger than its median. Also, the fund flow is large at the extremes. It is equal to 

23% at the 99th percentile and -15% at the 1st percentile. Similar to Brown and Wu (2016), to 

mitigate the effects of extreme observations that are potentially due to fund mergers or data 

error, for each fund, we winsorize the fund flow variable at the 1st and the 99th percentiles.35 
 

32 If a fund has a missing management company code in some months, we use the fund’s management company 
code in the previous months; if there is no information of management company code in the previous months, we 
use the fund’s management company code in the later months. 
33 In our sample, to be included in a family, a fund should be an active equity-only fund as defined above. 
34 The sample of Brown and Wu (2016) contains 2,053 funds. 
35 Instead of winsorizing the flow observations, in unreported robustness tests, we winsorize all variables at the 
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Moreover, the R-squared of the style-matching model is very high, with an average of around 

90%, showing that the model fits well and it is unlikely that we have omitted relevant 

benchmark factors in estimating the fund net alphas. In addition, 99% of our funds belong to a 

family with two or more funds, showing that most of the funds in our sample are managed by 

fund families. 

Table 2 illustrates the results of the model in Equation (44). We find that, on average, 

fund flows increase with lagged fund net alphas, as the coefficient of 𝛼௜,௧ିଵ  is highly 

significantly positive after we include all controls. By the results in (3), if the fund net alpha 

increases by 1 percentage point, a fund with the average size of $1170.67 million would 

experience an increase in fund flow by around 0.14 (= -0.0214ln(1170.67) + 0.2865) percentage 

points. Results of model specification (4) in Table 2 show that the coefficient of the interaction 

term 𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ is positive and significant at the 1% significance level. Then, fund flows 

are more sensitive to fund net alphas when fund net alphas are positive than when they are 

negative. If the fund net alpha increases by 1 percentage point, the fund flow increases by 0.13 

percentage points more if the fund net alpha is positive than if it is negative. Thus, the flow–

net alpha relation in our sample exhibits convexity. These results are consistent with the 

findings in the previous literature, such as Brown and Wu (2016), Lynch and Musto (2003), 

and Spiegel and Zhang (2013). 

Table 3 shows the results of the model in Equation (47). We can see that the coefficient 

of 𝛼௜,௧ିଵ is positive and highly significant, showing that in the base group, i.e., in Period 0, 

fund flows increase with fund net alphas. Also, the coefficient of 𝛼௜,௧ିଵ ∗ 𝑀1௜,௧ is negative 

and significant, showing that from Period 0 to Period 1, the flow–net alpha sensitivity decreases 

[if the fund net alpha increases by 1 percentage point, the fund flow decreases by 0.08 

percentage points fewer in Period 1 than in Period 0, by model specification (3)]. Moreover, 

shown by the results in Panel B, the coefficient of 𝛼௜,௧ିଵ ∗ 𝑀2௜,௧ is significantly higher than 

that of 𝛼௜,௧ିଵ ∗ 𝑀1௜,௧, so from Period 1 to Period 2, the flow–net alpha sensitivity increases [if 

the fund net alpha increases by 1 percentage point, the fund flow increases by 0.09 percentage 

points more in Period 2 than in Period 1, by model specification (3)]. In addition, the coefficient 

 
1st and 99th percentiles or exclude the flow observations below the 1st or above the 99th percentile following Brown 
and Wu (2016). We find very similar results in these robustness tests. 
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of 𝛼௜,௧ିଵ ∗ 𝑀3௜,௧ is significantly higher than that of 𝛼௜,௧ିଵ ∗ 𝑀2௜,௧, so from Period 2 to Period 

3, the flow–net alpha sensitivity decreases [if the fund net alpha increases by 1 percentage point, 

the fund flow decreases by 0.06 percentage points fewer in Period 3 than in Period 2, by model 

specification (3)]. To conclude, the flow–net alpha sensitivity decreases from Period 0 to Period 

1, increases from Period 1 to Period 2, and then decreases from Period 2 to Period 3; and, 

eventually, the flow–net alpha sensitivity in Period 3 is insignificantly different from the one 

in Period 0, as the coefficient of 𝛼௜,௧ିଵ ∗ 𝑀3௜,௧ is insignificant. 

We stress again that because of the dynamic nature of our model, the decreasing-

increasing-decreasing pattern of flow–net alpha sensitivity we detect depends on our sample 

period. No pattern, in this dynamic context, is expected to replicate itself due to different initial 

condition and stochastic realizations. 

If manager abilities’ precisions are constant or monotonic, the flow–net alpha 

sensitivity should change with time monotonically. The nonmonotonic flow–net alpha 

sensitivities that we identify above and report in Table 3 do not support the framework where 

fund manager abilities’ precisions are constant or monotonic. Instead, these findings support 

the case of dynamic unobservable manager abilities that drive the flow–net alpha sensitivities 

to increase during some periods and to decrease over others. 

Table 4 reports the results of the model in Equation (48). We do not find strong evidence 

that the flow–net alpha convexity changes over time. The difference in the coefficients of 𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ ∗ 𝑀3௜,௧ and 𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ ∗ 𝑀1௜,௧ are negative but only marginally significant 

[shown in Panel B model specification (3)]. The coefficients and other differences in the 

coefficients of 𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ ∗ 𝑀1௜,௧ , 𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ ∗ 𝑀2௜,௧ , and 𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ ∗ 𝑀3௜,௧  are 

insignificant either in all or in model specifications (2) and (3). If manager abilities’ precisions 

are constant or monotonic, the flow–net alpha convexity should change with time 

monotonically. We do not find this result here, and our results in Table 4 are unlikely to support 

a framework of unobservable abilities with monotonic precisions. 

We also re-run our models in Equations (47) and (48) for each individual fund and 

report the numbers of funds whose relevant coefficients are significant in Table 5.36 We further 

 
36 In the regressions for each fund, we do not include the fund dummies and year dummies, and we use the 
Newey-West estimator to estimate the standard errors, with the maximum lag of 12 to be considered in the 
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require the funds to have no missing observations between the first observation and the last one 

so that we can use the Newey-West estimator to estimate the standard errors, and we require 

the funds to have at least two years’ observations in Period 3. There is a total of 1029 funds in 

these tests on individual funds. 

Panel A shows the results of the model in Equation (47) regarding flow–net alpha 

sensitivity. We find that out of 1029 funds, 79 (139) of them experience an increase (decrease) 

in the flow–net alpha sensitivity from Period 0 to Period 1; 140 (90) of them experience an 

increase (decrease) in such sensitivity from Period 1 to Period 2; and 95 (117) of them 

experience an increase (decrease) in such sensitivity from Period 2 to Period 3. Also, 108 (128) 

funds experience an increase (decrease) in flow–net alpha sensitivity from Period 0 to Period 

2; 104 (135) funds experience an increase (decrease) in such sensitivity from Period 0 to Period 

3; and 124 (116) funds experience an increase (decrease) in such sensitivity from Period 1 to 

Period 3. Also, we can see that the majority of the funds have insignificant changes in flow–

net alpha sensitivity over time. 

Panel B shows the results of the model in Equation (48) regarding flow–net alpha 

convexity. We find that of 1029 funds, 121 (93) funds experience an increase (decrease) in the 

flow–net alpha convexity from Period 0 to Period 1; 94 (101) funds experience an increase 

(decrease) in such convexity from Period 1 to Period 2; and 97 (83) funds experience an 

increase (decrease) in such convexity from Period 2 to Period 3. Also, 95 (91) funds experience 

an increase (decrease) in flow–net alpha convexity from Period 0 to Period 2; 101 (94) funds 

experience an increase (decrease) in such convexity from Period 0 to Period 3; and 116 (111) 

funds experience an increase (decrease) in such convexity from Period 1 to Period 3. Also, we 

can see that the majority of the funds have insignificant changes in flow–net alpha convexity 

over time. 

The results in this table are unlikely to support the framework of constant or monotonic 

unobservable manager abilities’ precisions. If managers’ abilities’ precisions are constant or 

monotonic, we should find that a large portion of the funds experience a monotonic change in 

the flow–net alpha sensitivity and convexity from one period to another. However, we find that 

 
autocorrelation structure of the regression error. 
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the majority of funds experience no change in flow–net alpha sensitivity or convexity, and 

some funds even experience a nonmonotonic change in such sensitivity and convexity from 

one period to another. Therefore, the results in this table are likely to support the framework 

where managers’ abilities’ precisions are dynamic nonmonotonic and these dynamic processes 

vary across funds. 

Robustness Check 

For robustness checking, we redefine the time periods using calendar time, such that 

Period 0, Period 1, Period 2, and Period 3 are from January 2000 to December 2004, from 

January 2005 to December 2009, from January 2010 to December 2014, and from January 

2015 to December 2019, respectively. We then rerun our models and find quite consistent 

results. We skip the results for brevity. 

For our second robustness check, we analyze how the flow–net alpha sensitivity 

changes with funds’ age. If the flow–net alpha sensitivity changes monotonically with funds’ 

age, then it is consistent with a framework of unobservable abilities with monotonic precisions. 

On the other hand, if the flow–net alpha sensitivity changes with funds’ age nonmonotonically, 

then it is consistent with a nonlinear dynamic unobservable ability framework with 

nonmonotonic precisions. Our model is 

 𝐹𝑙𝑜𝑤௜,௧ = 𝛽଴ + 𝛽ଵ𝛼௜,௧ିଵ + ෍𝑐௝𝛼௜,௧ିଵ ∗ ൫𝐴𝑔𝑒௜,௧ିଵ൯௝௝+ ෍𝑑௝൫𝐴𝑔𝑒௜,௧ିଵ൯௝௝ + 𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ + 𝜀௜,௧ . (49) 

Then, the flow–net alpha sensitivity from this model is 𝛽ଵ + ∑ 𝑐௝൫𝐴𝑔𝑒௜,௧ିଵ൯௝௡௝ୀଵ . 

Table 6 shows the results of this model. We include the terms 𝛼௜,௧ିଵ ∗ ൫𝐴𝑔𝑒௜,௧ିଵ൯௝ and ൫𝐴𝑔𝑒௜,௧ିଵ൯௝ up to 𝑗 = 6 because the coefficients of these terms with 𝑗 = 7 are insignificant. 

As the interaction terms from 𝛼௜,௧ିଵ ∗ 𝐴𝑔𝑒௜,௧ିଵ to 𝛼௜,௧ିଵ ∗ ൫𝐴𝑔𝑒௜,௧ିଵ൯଺ are significant, then 

on average, the flow–net alpha sensitivity changes with fund age nonmonotonically. We also 

notice that the interaction term 𝛼௜,௧ିଵ ∗ ln𝑇𝑁𝐴௜,௧ିଵ becomes insignificant when we include 

the terms 𝛼௜,௧ିଵ ∗ ൫𝐴𝑔𝑒௜,௧ିଵ൯௝ into the model. Thus, the effect of fund age on the flow–net 
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alpha sensitivity overwhelms that of fund size on the flow–net alpha sensitivity. 

We draw the flow–net alpha sensitivity in Table 6 using the coefficient values of the 

model specification in Equation (6) and show that sensitivity in Figure 2. We plot the results 

for average funds of ages of 5 to 40 years because around 90% of our observations have a fund 

age within this range. When the average fund is 5 years old, if the fund net alpha increases by 

1 percentage point, the fund flow increases by around 0.3 percentage points. As the average 

fund grows from 5 years old to 10 years old, the flow–net alpha sensitivity decreases. When 

the average fund is 10 years old, a percentage point increase in fund net alpha stimulates an 

increase in fund flow by only 0.2 percentage points. After the average fund’s age reaches 10 

years, the flow–net alpha sensitivity gradually increases with fund age. After the average fund’s 

age is higher than around 25 years, the flow–net alpha sensitivity decreases again, and then 

increases after the average fund’s age is higher than around 35 years. When the average fund’s 

age is higher than 40 years, the flow–net alpha sensitivity increases to a level similar to the one 

when the fund is 5 years old. 

In general, the result shows that the flow–net alpha sensitivity changes with fund age 

nonmonotonically, supporting a nonlinear framework of dynamic unobservable ability. The 

decrease, in our sample, in flow–net alpha sensitivity with fund age in the earliest years might 

imply that investors have more and more precise estimates of manager abilities during these 

early years. However, manger abilities are dynamic over time, inducing lower or higher 

estimation precisions in the later years. Consequently, flow–net alpha sensitivity changes with 

fund age nonmonotonically, and there are turning points in the graph in the later years. 

5 Insights into the Findings in the Literature 

Current studies of the active fund management industry find interesting phenomena, 

and we show how our model provides insights into these findings. 

5.1 Insights on the Curvature of the Flow-performance Relation 

Several views can be found in the current literature on the curvature of the flow-

performance relation. Some studies conclude that the flow-performance relation is convex [see, 

for example, Berk and Green (2004), Brown and Wu (2016), and Lynch and Musto (2003)], 

whereas other studies suggest that this relation is linear [see, for example, Spiegel and Zhang 
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(2013)]. This study complements this discussion by showing that the flow-performance 

sensitivity can increase, decrease, be nonmonotonic, or stay unchanged over time, making 

empirical findings of these two types of curvature possible. 

Whereas the cross-sectional heterogeneity of functions mapping flows to performance 

would affect the empirical findings of the curvature of this relation using panel data [see the 

discussion in the introduction of Spiegel and Zhang (2013)], the dynamics over time of these 

functions would also affect the empirical findings. For a particular fund, our theoretical results 

suggest that the intercept, slope, and curvature of the function mapping flows to performance 

change over time, and these changes might be nonmonotonic [see for example, Equations (16) 

and (40)]. Thus, if we plot the time-series observations of its fund flows and fund net alphas 

on a two-dimensional space, the observation points could fill in an area such that the empirical 

fitted function shows linearity or convexity. 

For illustration, in Figure 3, we show two situations of observations of fund flows and 

fund net alphas of a particular fund. For each situation, we plot four increasing and convex 

functions (i.e., the blue dashed curves) with the independent variable as the fund net alpha and 

the dependent variable as the fund flow, and the corresponding observation points (i.e., the red 

circles). These four functions show the flow–net alpha relation of different time periods of the 

same fund. In the first situation shown on the left, we can see that the observations stay in an 

ellipse area. Consequently, the empirical fitted function (i.e., the black line) based on these 

observations is an upward-sloping line. In the second situation shown on the right, the 

observations stay in a crescent area, so the empirical fitted function (i.e., the black curve) based 

on these observations is an increasing and convex curve. In the real data, observations of fund 

flows and fund net alphas can stay in an area with more complex shapes. Thus, even though by 

theory, the flow-performance relation at each time period is increasing and convex, empirically, 

we can observe that this relation is linear or convex, depending on the situation. 

If we put different funds’ observations of fund flows and fund performances together 

in a panel regression, the situation would be more complex, because both the cross-sectional 

heterogeneity and the dynamics over time of the flow-performance relation exert impacts on 

the empirical results. Therefore, when analyzing the curvature of the flow-performance relation, 

we need to incorporate these two types of effects simultaneously. As this paper focuses on 
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modelling dynamic unobservable fund manager ability, we leave this empirical issue for future 

studies. 

5.2 Insights on Fund Marketing Activities 

There is interesting discussion in the literature of how funds’ marketing activities affect 

the flow-performance relation. For example, Huang, Wei, and Yan (2007) find that funds with 

higher marketing expenses, in a fund family with star funds and in a large fund family, have a 

higher flow sensitivity to medium performance and a lower flow sensitivity to high 

performance, i.e., a less convex flow-performance relation. They develop a model and show 

that given fund-level participation barriers, new investors can cover their participation costs 

(cost to obtain information about a fund) only if the fund performance improves. Hence, as the 

fund performance increases, the investments from both existing investors and new investors 

increase. Thus, compared to a fund with low participation cost, a fund with high participation 

cost would have fund flows increasing faster with fund performance, resulting in a more convex 

flow-performance relation. As funds with more marketing activities tend to have lower 

participation costs, they have a less convex flow-performance relation. 

Our model also offers insights into this phenomenon. First, the marketing expenditures 

are not directly related to fund size, so they are unlikely to be captured by the fund costs 

variable 𝐶(𝑞௧௔) ; instead, the fund manager charges management fee 𝑓  to cover these 

expenditures. Therefore, if more marketing expenditures imply a higher management fee, then 

they would induce a less convex flow-performance relation based on our theoretical results. 

Secondly and more importantly, a fund’s performance is likely to be (highly) correlated 

with other funds in the same fund family because the fund manager can obtain assistance from 

other managers in the family.37 Thus, marketing activities, such as promoting the fund family 

and its star funds, could offer additional information for investors to estimate the fund 

manager’s ability. If this is the case, then investors would have a more precise prior estimate 

of the manager’s ability (i.e., 𝛾଴ is smaller) and, consequently, more precise estimates of the 

manager’s ability over time, making the inferred manager ability less sensitive to innovation 

shocks in fund performance (i.e., 𝜎௠(𝛾௧) is smaller). Then, the flow-performance relation is 

 
37 Also see the discussions in Brown and Wu (2016). 
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less convex. 

We do not explicitly model the fixed up-front participation cost, as Huang, Wei, and 

Yan (2007) do. Also, in reality, whether funds’ marketing activities would reduce investors’ up-

front participation costs is difficult to observe and confirm. In our model, besides the variable 

fund costs, investors bear the other two types of cost over time: the management fee 𝑓 and 

the estimation error of manager ability 𝛾௧. If funds’ marketing activities increase the former 

and/or decrease the latter, then we show that the flow-performance relation is less convex. 

6 Conclusion 

We introduce a continuous-time rational model of the active fund management industry 

where unobservable fund manager abilities are dynamic. Our model predicts that flow-

performance relations change over time in a variety of patterns. Depending on parameter values 

and realizations, dynamics of managers’ abilities result in increasing, decreasing, 

nonmonotonic, or constant sensitivity of inferred manager abilities to innovation shocks in fund 

returns over time, consequently leading to increasing, decreasing, nonmonotonic, or constant 

flow-performance sensitivity, respectively. We show that these equilibrium results hold 

whether investors are risk-neutral or mean-variance risk-averse. We also show that if 

unobservable fund manager abilities and fund performance follow a nonlinear framework, the 

equilibrium flow-performance relation can have a more complex pattern over time. In addition, 

we offer empirical evidence of the dynamics of the flow–net alpha sensitivity, which supports 

a nonlinear framework of dynamic manager abilities. 

Our framework enhances the explanatory and predictive power of relations and 

phenomena in the active fund management industry. We show that much of the empirical 

evidence in the current literature is consistent with our model. In particular, our theoretical 

results support, depending on parameter values, both linear and convex empirical flow-

performance relations. We also show that if marketing activities increase management fees 

and/or improve estimates of fund manager abilities, then the empirical flow-performance 

relation is less convex. 

While this paper focuses on the flow-performance relation, our framework of dynamic 

unobservable manager abilities can be used to model dynamic unobservable human abilities in 
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other areas of finance, economics, and other social sciences.  
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Appendix 

This section provides the proofs of the results in the corresponding sections. 

Proof of Results in Section 2.3 

The first-order condition with respect to 𝑞௧௔ on the right-hand side of Equation (13), 

identifies 𝑞௧௔∗ as 

 𝑞௧௔∗ = 𝐴ଵ𝑚௧2𝑐 . (A1) 

The second-order condition −2𝑐 < 0  shows that 𝑞௧௔∗  induces a maximum. Substituting 

Equation (A1) into Equation (13), the fund manager’s optimal profit is 

 𝑓𝑞௧∗ = (𝐴ଵ𝑚௧)ଶ4𝑐 . (A2) 

Rearranging, the optimal fund size is 

 𝑞௧∗ = (𝐴ଵ𝑚௧)ଶ4𝑐𝑓 . (A3) 

Dividing Equation (A1) by Equation (A3) gives 

 𝑞௧௔∗𝑞௧∗ = 2𝑓𝐴ଵ𝑚௧ . (A4) 

Also, substituting Equations (A1) and (A3) into Equation (9), we characterize the fund 

net alpha and gross alpha evolution relation as 

 𝑑𝑆௧𝑆௧ = 2𝑓𝐴ଵ𝑚௧ 𝑑𝜉௧𝜉௧ − 2𝑓𝑑𝑡. (A5) 

Finally, substituting Equation (5) into Equation (A5), we have the fund net alpha evolution 

 𝑑𝑆௧𝑆௧ = 2𝑓𝐵𝐴ଵ𝑚௧ 𝑑𝑊ഥ௧ . (A6) 

Thus, in equilibrium, the fund net alpha is normally distributed with mean zero and variance 

that decreases in inferred ability. That is, the higher the inferred ability the lower is the noisy 

shocks’ effect on net alpha. 

Applying Itô’s Lemma on 𝑞௧∗ to Equation (A3) to derive 𝑑𝑞௧∗ and then dividing 𝑑𝑞௧∗ 
by 𝑞௧∗ defined by Equation (A3), yields 
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 𝑑𝑞௧∗𝑞௧∗ = 2𝐴ଵଶ𝑚௧𝑑𝑚௧ + 𝐴ଵଶ(𝑑𝑚௧)ଶ(𝐴ଵ𝑚௧)ଶ = 2𝑚௧𝑑𝑚௧ + (𝑑𝑚௧)ଶ𝑚௧ଶ . (A7) 

Substituting Equation (4) (for the 𝑑𝑚௧ terms) into Equation (A7) and then Equation 

(3) into the 𝑑𝑊ഥ௧ term yields 

 𝑑𝑞௧∗𝑞௧∗ = 2𝜎௠(𝛾௧)𝑚௧𝐵 ൬𝑑𝜉௧𝜉௧ ൰ + 𝜎௠ଶ (𝛾௧)𝑚௧ଶ𝐵ଶ ൬𝑑𝜉௧𝜉௧ ൰ଶ
+ 2𝑚௧ ቈ(𝑎଴ + 𝑎ଵ𝑚௧) − 𝐴ଵ𝜎௠(𝛾௧)𝑚௧𝐵 ቉𝑑𝑡. (A8) 

We substitute Equation (A5) into the flow-performance relation in Equation (A8) so that 

performance is measured by net alphas. We have 

 𝑑𝑞௧∗𝑞௧∗ = 𝐴ଵ𝜎௠(𝛾௧)𝑓𝐵 ൬𝑑𝑆௧𝑆௧ ൰ + 𝐴ଵଶ𝜎௠ଶ (𝛾௧)4𝑓ଶ𝐵ଶ ൬𝑑𝑆௧𝑆௧ ൰ଶ + 2 ൬𝑎଴𝑚௧ + 𝑎ଵ൰ 𝑑𝑡. (A9) 

Q.E.D. 

Proof of Results in Section 2.4 

Going through the process that is the same as the previous proof, we have a similar 

equilibrium relation between fund flows and expected manager abilities: 

 𝑑𝑞௧∗𝑞௧∗ = 2𝑚௧𝑑𝑚௧ + (𝑑𝑚௧)ଶ𝑚௧ଶ . (A10) 

Then, we directly substitute (18) into (A10) and have 

 𝑑𝑞௧∗𝑞௧∗ = 2𝛾௧𝐵ଶ𝑚௧ ൬𝑑𝜉௧𝜉௧ ൰ + 𝛾௧ଶ𝐵ସ𝑚௧ଶ ൬𝑑𝜉௧𝜉௧ ൰ଶ − 2𝛾௧𝐵ଶ 𝑑𝑡. (A11) 

Substituting (A5) and (19) into (A11) (with 𝐴ଵ = 1), we have 

 𝑑𝑞௧∗𝑞௧∗ = 1𝑓 ൬ 𝛾଴𝐵ଶ + 𝛾଴𝑡൰ ൬𝑑𝑆௧𝑆௧ ൰ + 14𝑓ଶ ൬ 𝛾଴𝐵ଶ + 𝛾଴𝑡൰ଶ ൬𝑑𝑆௧𝑆௧ ൰ଶ. (A12) 

Q.E.D. 

Proof of Results in Section 2.5 
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Substituting Equation (9) and then Equation (5) into Equation (25), and regarding 𝑞௧௔, 𝑞௧, and 𝑓 as exogenous to the investor, we calculate E ቂௗ௣೟௣೟ |ℱ௧కቃ and Var ቂௗ௣೟௣೟ |ℱ௧కቃ. Then, the 

investor’s problem becomes 

 max௪೟ᇱ௦
ቈ𝑤௧ ቆ𝑞௧௔𝑞௧ 𝐴ଵ𝑚௧ − 𝑐𝑞௧௔ଶ𝑞௧ − 𝑓ቇ + 𝜇௣቉ 𝑑𝑡

ඨቈ𝑤௧ଶ ൬𝑞௧௔𝑞௧ ൰ଶ 𝐵ଶ + 𝜎௣ଶ቉ 𝑑𝑡 , (A13) 

subject to 

 0 ≤ 𝑤௧ ≤ 1. (A14) 

At each time 𝑡 , the first-order condition with respect to 𝑤௧  generates the optimal 

weight 𝑤௧∗: 
 𝑤௧∗ = ቆ𝑞௧௔𝑞௧ 𝐴ଵ𝑚௧ − 𝑐𝑞௧௔ଶ𝑞௧ − 𝑓ቇ𝜎௣ଶ൬𝑞௧௔𝑞௧ ൰ଶ 𝐵ଶ𝜇௣ . (A15) 

The second-order condition is satisfied (the proof is omitted for brevity), so 𝑤௧∗  is the 

maximizer. 

As investors face the same risk-return tradeoff and have the same objective function, 

they all make the same optimal decision of 𝑤௧∗. We define the part of the total wealth of all 

investors that is allocated to financial assets (i.e., allocated to the active fund and the passive 

benchmark portfolio) as 𝑉௧, 𝑉௧ ∈ (0, +∞), 0 ≤ 𝑡 ≤ 𝑇. In reality, 𝑉௧ not only depends on the 

returns from financial assets, but also depends on production activities, research and 

development expenditures, consumption, taxes, and many other aspects of the economy that 

we do not model here. Thus, to simplify our analysis, we assume that 𝑉௧ is exogenous to both 

investors and managers. Here, the amount of wealth allocated to the fund, i.e., the fund’s size, 

is 

 𝑞௧ = 𝑤௧∗𝑉௧ = 𝑉௧ ቆ𝑞௧௔𝑞௧ 𝐴ଵ𝑚௧ − 𝑐𝑞௧௔ଶ𝑞௧ − 𝑓ቇ𝜎௣ଶ൬𝑞௧௔𝑞௧ ൰ଶ 𝐵ଶ𝜇௣ . (A16) 

By rearranging Equation (A16), we can express the fund manager’s profit as 
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 𝑓𝑞௧ = −𝑞௧௔ଶ𝐵ଶ𝜇௣𝑉௧𝜎௣ଶ − 𝑐𝑞௧௔ଶ + 𝑞௧௔𝐴ଵ𝑚௧ . (A17) 

The fund manager’s objective is to maximize the fund’s profit, 𝑓𝑞௧, and to do so, the manager 

has to choose 𝑞௧௔ to maximize the right-hand side of Equation (A17). Thus, the manager’s 

problem can be written as 

 max௤೟ೌ − 𝑞௧௔ଶ𝐵ଶ𝜇௣𝑉௧𝜎௣ଶ − 𝑐𝑞௧௔ଶ + 𝑞௧௔𝐴ଵ𝑚௧ , (A18) 

subject to 

 0 ≤ 𝑞௧௔ ≤ 𝑞௧ . (A19) 

Here, 𝑞௧ and 𝑉௧ are exogenous to the manager, so are unaffected by his/her choice of 𝑞௧௔. 

Then, the first-order condition with respect to 𝑞௧௔ generates the optimal weight 𝑞௧௔∗: 
 𝑞௧௔∗ = 𝐴ଵ𝑚௧𝑉௧𝜎௣ଶ2൫𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ൯. (A20) 

The second-order condition is −ଶ஻మఓ೛௏೟ఙ೛మ − 2𝑐 < 0, showing that 𝑞௧௔∗ is a maximizer. 

Then, after substituting Equation (A20) into Equation (A17) and rearranging, we have 

the optimal fund size: 

 𝑞௧∗ = (𝐴ଵ𝑚௧)ଶ𝑉௧𝜎௣ଶ4𝑓൫𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ൯. (A21) 

We can see that 

 𝑞௧௔∗𝑞௧∗ = 2𝑓𝐴ଵ𝑚௧ . (A22) 

The fund manager’s optimal profit is 

 𝑓𝑞௧∗ = (𝐴ଵ𝑚௧)ଶ𝑉௧𝜎௣ଶ4൫𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ൯. (A23) 

A fund manager’s higher expected ability and a higher benchmark volatility induce a higher 

optimal profit. On the other hand, a higher fund gross alpha volatility, a higher benchmark 

mean return, and higher fund cost sensitivity to size, induce a lower optimal profit. 

Then, substituting Equations (A20) and (A21) into Equation (9), we get a relation 

between net alpha and gross alpha as follows: 



48 
 

 𝑑𝑆௧𝑆௧ = 2𝑓𝐴ଵ𝑚௧ 𝑑𝜉௧𝜉௧ − 𝑓𝑐𝑉௧𝜎௣ଶ𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ 𝑑𝑡 − 𝑓𝑑𝑡
= 𝑓 ቆ 2𝐴ଵ𝑚௧ 𝑑𝜉௧𝜉௧ − 𝐵ଶ𝜇௣ + 2𝑐𝑉௧𝜎௣ଶ𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ 𝑑𝑡ቇ. (A24) 

Then, substituting Equation (5) into Equation (A24), we have the fund net alpha: 

 𝑑𝑆௧𝑆௧ = 𝑓𝐵ଶ𝜇௣𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ 𝑑𝑡 + 2𝑓𝐵𝐴ଵ𝑚௧ 𝑑𝑊ഥ௧ . (A25) 

Substituting Equations (A20) and (A21) into Equation (A15), we have the optimal 

weight allocated to the active fund as 

 𝑤௧∗ = (𝐴ଵ𝑚௧)ଶ𝜎௣ଶ4𝑓൫𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ൯. (A26) 

Then, substituting Equations (A22), (28), and (A26) into Equation (A13), we have the 

investor’s optimal instantaneous Sharpe ratio at time 𝑡, 
 ቈ (𝐴ଵ𝑚௧)ଶ𝜎௣ଶ4𝑓൫𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ൯ × 𝑓𝐵ଶ𝜇௣𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ + 𝜇௣቉ 𝑑𝑡

ඨ൥ቆ (𝐴ଵ𝑚௧)ଶ𝜎௣ଶ4𝑓൫𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ൯ቇଶ ൬ 2𝑓𝐴ଵ𝑚௧൰ଶ 𝐵ଶ + 𝜎௣ଶ൩ 𝑑𝑡
= ൥ (𝐴ଵ𝑚௧)ଶ𝜎௣ଶ𝐵ଶ𝜇௣4൫𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ൯ଶ + 𝜇௣൩ 𝑑𝑡
ඨ൥ (𝐴ଵ𝑚௧)ଶ𝜎௣ସ𝐵ଶ4൫𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ൯ଶ + 𝜎௣ଶ൩ 𝑑𝑡. 

(A27) 

Now we are ready to derive the flow-performance relation. Applying Itô’s Lemma to 

Equation (A21) to derive 𝑑𝑞௧∗, then dividing by 𝑞௧∗ from Equation (A21), we have 

 𝑑𝑞௧∗𝑞௧∗ = 2𝑚௧𝑑𝑚௧ + (𝑑𝑚௧)ଶ𝑚௧ଶ + 𝑋௧ , (A28) 

where 𝑋௧  contains all the terms related to 𝑑𝑉௧  and (𝑑𝑉௧)ଶ . As we assume that 𝑉௧  is 

exogenous to the market, thus independent of 𝑚௧ at each time 𝑡, we assume 𝑑𝑉௧𝑑𝑚௧ = 0. 

We note that the above result is valid only if 𝑚௧ > 𝑚௧. If 𝑚௧ ≤ 𝑚௧, then 𝑑𝑞௧∗/𝑞௧∗ = 0. 

Given 𝑚௧ > 𝑚௧, we substitute Equation (4) (for the 𝑑𝑚௧ terms) into Equation (A28), 
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and then replace the 𝑑𝑊ഥ௧ term by its definition in Equation (3). We have the flow-performance 

relation using gross alpha as the performance measure: 

 𝑑𝑞௧∗𝑞௧∗ = 2𝜎௠(𝛾௧)𝑚௧𝐵 ൬𝑑𝜉௧𝜉௧ ൰ + 𝜎௠ଶ (𝛾௧)𝑚௧ଶ𝐵ଶ ൬𝑑𝜉௧𝜉௧ ൰ଶ
+ 2𝑚௧ ቈ(𝑎଴ + 𝑎ଵ𝑚௧) − 𝐴ଵ𝜎௠(𝛾௧)𝑚௧𝐵 ቉𝑑𝑡 + 𝑋௧ . (A29) 

We then substitute Equation (A24) into Equation (A29), and get the flow-performance relation 

using net alpha as the performance measure: 

 𝑑𝑞௧∗𝑞௧∗ = 𝐴ଵ𝜎௠(𝛾௧)𝑓𝐵 ൬𝑑𝑆௧𝑆௧ ൰ + 𝐴ଵଶ𝜎௠ଶ (𝛾௧)4𝑓ଶ𝐵ଶ ൬𝑑𝑆௧𝑆௧ ൰ଶ + 𝑌௧𝑑𝑡 + 𝑋௧ , (A30) 

where 

 𝑌௧ = 2𝑚௧ ቈ(𝑎଴ + 𝑎ଵ𝑚௧) − 𝐴ଵ𝜎௠(𝛾௧)𝑚௧𝐵 ቉ + 𝐴ଵ𝜎௠(𝛾௧)൫𝐵ଶ𝜇௣ + 2𝑐𝑉௧𝜎௣ଶ൯𝐵൫𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ൯  

= 2𝑎଴𝑚௧ + 2𝑎ଵ − 𝐴ଵ𝜎௠(𝛾௧)𝐵ଶ𝜇௣𝐵൫𝐵ଶ𝜇௣ + 𝑐𝑉௧𝜎௣ଶ൯. (A31) 

Here both 𝑋௧ and 𝑌௧ are independent of either 𝑑𝜉௧/𝜉௧ or 𝑑𝑆௧/𝑆௧. 
Q.E.D. 
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Figure 1. Simulation Results 

Figure 1 illustrates the simulation results using parameters defined in Case One, Case Two, and Case Three, in the 
two subplots on the top, two subplots in the middle, and two subplots at the bottom, respectively. For each case, 
on the left-hand side, we illustrate the sensitivity of expected manager ability to shocks in gross alphas, 𝜎௠(𝛾௧), 
from Month 13 to Month 240, and on the right-hand side, we illustrate the fund flow (vertical axis) and fund net 
alpha (horizontal axis) from Month 25 to Month 48 in blue circles, from Month 85 to Month 108 in green stars, 
and from Month 217 to Month 240 in red pluses. 
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Figure 2 Flow–net alpha Sensitivity and Fund Age 

Figure 2 illustrates the result of how flow–net alpha sensitivity changes with fund age. The flow–net alpha 
sensitivity is expressed by 𝛽ଵ + ∑ 𝑐௝൫𝐴𝑔𝑒௜,௧ିଵ൯௝଺௝ୀଵ , and we plot the values of flow–net alpha sensitivity (vertical 
axis) over the values of 𝐴𝑔𝑒௜,௧ିଵ  (horizontal axis). The parameter values 𝛽ଵ  and 𝑐ଵ  to 𝑐଺  are from the 
estimated coefficient values of model specification (6) in Table 6. 
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Figure 3. Examples of Fitting Observations of Fund Flows and Fund Net Alphas 

Figure 3 illustrates two situations of fitting observations of fund flows and fund net alphas on a two-dimension 
space. In each of the situation, each of the four blue dashed curves represents a function with fund net alpha (fund 
flow) as the independent variable (dependent variable) in a different time period for the same fund. Each of these 
functions is increasing and convex. The red circles represent the observations corresponding to these functions. 
Regarding the left (right) situation, the blue ellipse (blue crescent) indicates the area that the observations cover, 
and the black line (black curve) represents the empirical fitted function based on these observations. 
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Table 1. Summary Statistics 

Table 1 shows the summary statistics of our monthly observations from January 2000 to December 2019. Flow is 
the fund percentage flow, calculated as the growth rate of total net asset under management minus fund net return, 
and it is in decimal. Fund Net Return is the fund return net of management expenses, 12b-fees, and front and rear 
load fees, and it is in decimal. Alpha is the fund net alpha 𝛼௜,௧ estimated by the style matching the model in 
Equation (46), and it is in decimal. The Style-Matching Model R-squared is the 𝑅ଶ that we get by running the 
style matching model in Equation (46), and it is in decimal. TNA is the fund’s total net asset under management 
measured in million dollars. Expense is the fund expense ratio as of the most recently completed fiscal year, 
including 12b-1 fees, and it is in decimal. Age is the fund age, calculated as the number of 10 years since the 
inception of the oldest share class. Vol is the fund volatility, calculated as the standard deviation of the fund’s net 
returns in the prior 12 months, and it is in decimal. FamAlpha is the fund family’s net alpha, calculated as the 
weighted average of the family members’ net alphas, excluding the net alpha of the fund under consideration, 
where the lagged net asset under management is the weight, and it is in decimal. FamSize is the fund family size, 
calculated as the number of coexisting active equity-only funds in the family, and it is a number. 

Variable Observation Mean Standard
Deviation

1st 25th 50th 75th 99th

Fund Flow (Decimal), Flow 338764 0.0163 2.5522 -0.1535 -0.0174 -0.0066 0.0051 0.2269
Fund Net Return  (Decimal), Ret 338764 0.0070 0.0543 -0.1296 -0.0174 0.0116 0.0357 0.1196
Fund Net Alpha (Decimal), Alpha 338764 -0.0004 0.0291 -0.0471 -0.0078 -0.0004 0.0071 0.0450
Style-Matching Model R-Squared  (Decimal) 338764 0.8977 0.0909 0.5867 0.8681 0.9241 0.9570 0.9899
Fund Total Net Asset (in 1 Million Dollar), TNA 338764 1170.67 4505.53 0.60 42.70 185.10 742.80 17795.30
Fund Expense (Decimal), Expense 338764 0.0131 0.0054 0.0038 0.0095 0.0122 0.0161 0.0259
Fund Age (10 Years), Age 338764 1.7813 1.2750 0.1417 1.0083 1.5333 2.0917 7.3250
Fund Volatility (Decimal), Vol 338756 0.0448 0.0313 0.0153 0.0293 0.0406 0.0553 0.1117
Family Net Alpha (Decimal), FamAlpha 324944 -0.0004 0.1074 -0.0337 -0.0052 -0.0003 0.0043 0.0304
Family Size (Number), FamSize 324944 47.4851 39.1923 2 14 39 70 165

Percentile
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Table 2. Flow–Net Alpha Sensitivity and Convexity 

Table 2 reports the results of the model in Equation (44). The dependent variable is Flow, the fund percentage 
flow. Lag_Alpha is the fund net alpha lagged by one month, 𝛼௜,௧ିଵ. D is a dummy variable, which is one if 
Lag_Alpha is positive or zero, and is zero otherwise. Expense is the fund expense ratio as of the most recently 
completed fiscal year, including 12b-1 fees. Lag_LnTNA is the natural logarithm of the fund’s total net assets 
under management lagged by one month. Lag_Flow is the Flow lagged by one month. Lag_LnAge is the natural 
logarithm fund age lagged by one month. Vol is the fund volatility. Lag_FamAlpha is the fund family’s net alpha 
lagged by one month. Lag_LnFamSize is the natural logarithm fund family size lagged by one month. Standard 
errors are clustered by fund and presented in parentheses. Standard errors are clustered by fund and presented in 
parentheses. The symbols ***, **, and * represent the 1%, 5%, and 10% significance levels, respectively, in a 
two-tail t-test. 

(1) (2) (3) (4)
Lag_Alpha 0.0498 0.3175*** 0.2865*** 0.2290***

(0.0847) (0.0597) (0.0562) (0.0562)
Lag_Alpha*D 0.1278***

(0.0421)
Expense -1.5423*** -1.6199*** -2.4671*** -2.4649***

(0.1906) (0.1971) (0.4181) (0.4192)
Lag_Flow 0.0007 0.0007 0.0005 0.0005

(0.0006) (0.0006) (0.0004) (0.0004)
Vol -0.0123* -0.0132 -0.0625*** -0.0772***

(0.0071) (0.0131) (0.0241) (0.0254)
Lag_LnAge -0.0256*** -0.0260*** -0.0681*** -0.0681***

(0.0011) (0.0011) (0.0035) (0.0035)
Lag_LnTNA -0.0022*** -0.0022*** -0.0054*** -0.0054***

(0.0005) (0.0005) (0.0008) (0.0008)
Lag_Alpha*Lag_LnTNA 0.0049 -0.0238** -0.0214** -0.0231**

(0.0106) (0.0099) (0.0092) (0.0095)
Lag_FamAlpha 0.0001 0.0004** 0.0004**

(0.0002) (0.0002) (0.0002)
Lag_LnFamSize -0.0013*** -0.0022** -0.0022**

(0.0003) (0.0009) (0.0009)
Constant 0.0401*** 0.0458*** 0.0597*** 0.0588***

(0.0050) (0.0051) (0.0087) (0.0087)
Year Dummies No No Yes Yes
Fund Dummies No No Yes Yes

Observations 337,197 323,330 323,330 323,330
R-squared 0.0319 0.0327 0.0436 0.0436
Adjusted R-squared 0.0318 0.0327 0.0435 0.0435  
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Table 3. Time Pattern of Flow–Net Alpha Sensitivity 

Table 3 reports the results of the model in Equation (47). The dependent variable is Flow, the fund percentage 
flow and Lag_Alpha is the fund net alpha lagged by one month, 𝛼௜,௧ିଵ . We divide a fund’s time-series 
observations into four parts: the first five years of observations in the sample (i.e., Period 0), the second five years 
(i.e., Period 1), the third five years (i.e., Period 2), and the observations in the remaining period (i.e., Period 3). 
M1, M2, and M3 is one if the time is in Period 1, Period 2, and Period 3, respectively, and zero otherwise. Expense 
is the fund expense ratio as of the most recently completed fiscal year, including 12b-1 fees. Lag_LnTNA is the 
natural logarithm of the fund’s total net assets under management lagged by one month. Lag_Flow is the Flow 
lagged by one month. Lag_LnAge is the natural logarithm fund age lagged by one month. Vol is the fund volatility. 
Lag_FamAlpha is the fund family’s net alpha lagged by one month. Lag_LnFamSize is the natural logarithm fund 
family size lagged by one month. Standard errors are clustered by fund and presented in parentheses. The symbols 
***, **, and * represent the 1%, 5%, and 10% significance level, respectively, in a two-tail t-test. Panel A reports 
the regression results. Panel B reports the results of two-tailed t-tests on the differences in coefficients. 

Panel A (1) (2) (3) Panel B (1) (2) (3)
Lag_Alpha 0.2887*** 0.3533*** 0.3148***

(0.0309) (0.0693) (0.0639) Coefficient 0.2130*** 0.0829*** 0.0900***
Lag_Alpha*M1 -0.2076*** -0.0836*** -0.0764*** Standard Error 0.0296 0.0291 0.0286

(0.0181) (0.0309) (0.0289) Student-t Statistics 51.5500 8.1330 9.9020
Lag_Alpha*M2 0.0050 -0.0008 0.0136 Two-Tailed P-Value 0.0000 0.0044 0.0017

(0.0326) (0.0349) (0.0320)
Lag_Alpha*M3 -0.0447 -0.0542* -0.0454

(0.0354) (0.0309) (0.0280) Coefficient -0.0496 -0.0534* -0.0590**
M1 -0.0039*** -0.0029*** 0.0129*** Standard Error 0.0427 0.0286 0.0286

(0.0005) (0.0011) (0.0020) Student-t Statistics 1.3540 3.4890 4.2520
M2 -0.0005 0.0011 0.0108*** Two-Tailed P-Value 0.2450 0.0620 0.0394

(0.0006) (0.0014) (0.0027)
M3 -0.0000 0.0016 0.0011

(0.0007) (0.0018) (0.0029) Coefficient 0.1630*** 0.0295 0.0310
Expense -1.5246*** -1.6052*** -2.4256*** Standard Error 0.0328 0.0256 0.0268

(0.0397) (0.1974) (0.4134) Student-t Statistics 24.6000 1.3230 1.3370
Lag_Flow 0.0007*** 0.0007 0.0005 Two-Tailed P-Value 0.0000 0.2500 0.2480

(0.0001) (0.0006) (0.0004)
Vol 0.0017 0.0011 -0.0626***

(0.0062) (0.0142) (0.0241)
Lag_LnAge -0.0255*** -0.0266*** -0.0712***

(0.0004) (0.0016) (0.0036)
Lag_LnTNA -0.0022*** -0.0021*** -0.0055***

(0.0001) (0.0005) (0.0008)
Lag_Alpha*Lag_LnTNA -0.0141*** -0.0253** -0.0227**

(0.0050) (0.0103) (0.0095)
Lag_FamAlpha 0.0002 0.0004**

(0.0002) (0.0002)
Lag_LnFamSize -0.0013*** -0.0021**

(0.0003) (0.0009)
Constant 0.0404*** 0.0450*** 0.0581***

(0.0010) (0.0052) (0.0086)
Year Dummies No No Yes
Fund Dummies No No Yes

Observations 337,197 323,330 323,330
R-squared 0.0326 0.0330 0.0446
Adjusted R-squared 0.0325 0.0329 0.0445

Lag_Alpha*M2 - Lag_Alpha*M1

Lag_Alpha*M3 - Lag_Alpha*M2

Lag_Alpha*M3 - Lag_Alpha*M1
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Table 4. Time Pattern of Flow–Net Alpha Convexity 

Table 4 reports the results of the model in Equation (48). The dependent variable is Flow, the fund percentage 
flow and Lag_Alpha is the fund net alpha lagged by one month, 𝛼௜,௧ିଵ. D is a dummy variable, which is one if 
Lag_Alpha is positive or zero, and is zero otherwise. M1, M2, and M3 is one if the time is in Period 1, Period 2, 
and Period 3, respectively, and zero otherwise. Expense is the fund expense ratio as of the most recently completed 
fiscal year, including 12b-1 fees. Lag_LnTNA is the natural logarithm of the fund’s total net asset under 
management lagged by one month. Lag_Flow is the Flow lagged by one month. Lag_LnAge is the natural 
logarithm fund age lagged by one month. Vol is the fund volatility. Lag_FamAlpha is the fund family’s net alpha 
lagged by one month. Lag_LnFamSize is the natural logarithm fund family size lagged by one month. Standard 
errors are clustered by fund and presented in parentheses. The symbols ***, **, and * represent the 1%, 5%, and 
10% significance level, respectively, in a two-tail t-test. Panel A reports the regression results. Panel B reports the 
results of two-tailed t-tests on the differences in coefficients. 

Panel A (1) (2) (3) Panel B (1) (2) (3)
Lag_Alpha 0.2320*** 0.2846*** 0.2548***

(0.0374) (0.0729) (0.0653) Coefficient 0.2390*** -0.1760* -0.1030
Lag_Alpha*D 0.1306*** 0.1341* 0.1179* Standard Error 0.0894 0.1020 0.1060

(0.0407) (0.0734) (0.0687) Student-t Statistics 7.1210 2.9810 0.9530
Lag_Alpha*M1*D -0.2363*** 0.1167 0.0784 Two-Tailed P-Value 0.0076 0.0844 0.3290

(0.0549) (0.0900) (0.0887)
Lag_Alpha*M2*D 0.0022 -0.0595 -0.0248

(0.0907) (0.1076) (0.1065) Coefficient -0.1030 -0.0941 -0.0489
Lag_Alpha*M3*D -0.1013 -0.1536 -0.0737 Standard Error 0.1190 0.0919 0.0938

(0.0962) (0.0937) (0.0897) Student-t Statistics 0.7520 1.0490 0.2710
Lag_Alpha*M1 -0.0376 -0.1309*** -0.1069** Two-Tailed P-Value 0.3860 0.3060 0.6030

(0.0447) (0.0430) (0.0475)
Lag_Alpha*M2 0.0148 0.0389 0.0360

(0.0545) (0.0477) (0.0475) Coefficient 0.1350 -0.2700*** -0.1520*
Lag_Alpha*M3 0.0143 0.0291 0.0004 Standard Error 0.0950 0.0829 0.0907

(0.0572) (0.0445) (0.0433) Student-t Statistics 2.0220 10.6300 2.8120
M1 -0.0024*** -0.0033*** 0.0126*** Two-Tailed P-Value 0.1550 0.0011 0.0938

(0.0006) (0.0012) (0.0020)
M2 -0.0001 0.0016 0.0109***

(0.0008) (0.0015) (0.0028)
M3 0.0008 0.0025 0.0014

(0.0009) (0.0019) (0.0030)
Expense -1.5300*** -1.6155*** -2.4220***

(0.0398) (0.1977) (0.4147)
Lag_Flow 0.0007*** 0.0007 0.0005

(0.0001) (0.0006) (0.0004)
Vol -0.0004 -0.0122 -0.0773***

(0.0063) (0.0149) (0.0260)
Lag_LnAge -0.0255*** -0.0266*** -0.0713***

(0.0004) (0.0016) (0.0036)
Lag_LnTNA -0.0022*** -0.0022*** -0.0055***

(0.0001) (0.0005) (0.0008)
Lag_Alpha*Lag_LnTNA -0.0172*** -0.0266** -0.0239**

(0.0050) (0.0105) (0.0097)
Lag_FamAlpha 0.0002 0.0004**

(0.0002) (0.0002)
Lag_LnFamSize -0.0013*** -0.0021**

(0.0003) (0.0009)
Constant 0.0397*** 0.0448*** 0.0573***

(0.0011) (0.0052) (0.0086)
Year Dummies No No Yes
Fund Dummies No No Yes

Observations 337,197 323,330 323,330
R-squared 0.0326 0.0330 0.0446
Adjusted R-squared 0.0326 0.0330 0.0445

Lag_Alpha*M2*D - Lag_Alpha*M1*D

Lag_Alpha*M3*D - Lag_Alpha*M2*D

Lag_Alpha*M3*D - Lag_Alpha*M1*D
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Table 5. Flow–Net Alpha Sensitivity and Convexity: Results of Individual Funds 

Table 5 reports the number of funds whose relevant coefficients or differences in coefficients in the model, in 
Equations (47) and (48), are significant; these numbers are in Panel A and Panel B, respectively. The models are 𝐹𝑙𝑜𝑤௜,௧ = 𝛽଴ + 𝛽ଵ𝛼௜,௧ିଵ + 𝛽ଶ𝛼௜,௧ିଵ ∗ 𝑀1௜,௧ + 𝛽ଷ𝛼௜,௧ିଵ ∗ 𝑀2௜,௧ + 𝛽ସ𝛼௜,௧ିଵ ∗ 𝑀3௜,௧ + 𝛽ହ𝑀1௜,௧ + 𝛽଺𝑀2௜,௧ +𝛽଻𝑀3௜,௧ + 𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ + 𝜀௜,௧, and 𝐹𝑙𝑜𝑤௜,௧ = 𝛽଴ + 𝛽ଵ𝛼௜,௧ିଵ + 𝛽ଶ𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ + 𝛽ଷ𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ ∗ 𝑀1௜,௧ + 𝛽ସ𝛼௜,௧ିଵ ∗ 𝐷௜,௧ିଵ ∗ 𝑀2௜,௧ + 𝛽ହ𝛼௜,௧ିଵ ∗𝐷௜,௧ିଵ ∗ 𝑀3௜,௧ + 𝛽଺𝛼௜,௧ିଵ ∗ 𝑀1௜,௧ + 𝛽଻𝛼௜,௧ିଵ ∗ 𝑀2௜,௧ + 𝛽଼𝛼௜,௧ିଵ ∗ 𝑀3௜,௧ + 𝛽ଽ𝑀1௜,௧ + 𝛽ଵ଴𝑀2௜,௧ + 𝛽ଵଵ𝑀3௜,௧ +𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ + 𝜀௜,௧, respectively. 
The total number of funds in these tests is 1029. The models are regressed on each fund, with all the control 
variables except the fund dummies and year dummies. Newey-West estimator is used to estimate the standard 
errors, with the maximum lag of 12 to be considered in the autocorrelation structure of the regression error. The 
symbols ***, **, and * represent the 1%, 5%, and 10% significance level, respectively, in a two-tail t-test. The 
last column shows the number of funds whose relevant coefficients or differences in coefficients are significant 
at least at 10% significance level in a two-tail t-test. 

Panel A:  The Model in Equation (47) Flow–Net Alpha Sensitivity 
Significance * ** *** Total 𝛽ଶ > 0 34 29 16 79 𝛽ଶ < 0 53 54 32 139 𝛽ଷ > 0 34 45 29 108 𝛽ଷ < 0 43 55 30 128 𝛽ସ > 0 23 53 28 104 𝛽ସ < 0 41 56 38 135 𝛽ଷ − 𝛽ଶ > 0 59 57 24 140 𝛽ଷ − 𝛽ଶ < 0 30 40 20 90 𝛽ସ − 𝛽ଷ > 0 41 36 18 95 𝛽ସ − 𝛽ଷ < 0 48 54 15 117 𝛽ସ − 𝛽ଶ > 0 39 53 32 124 𝛽ସ − 𝛽ଶ < 0 29 48 39 116 

Panel B:  The Model in Equation (48) Flow–Net Alpha Convexity 
Significance * ** *** Total 𝛽ଷ > 0 40 46 35 121 𝛽ଷ < 0 29 43 21 93 𝛽ସ > 0 36 37 22 95 𝛽ସ < 0 26 36 29 91 𝛽ହ > 0 34 40 27 101 𝛽ହ < 0 35 37 22 94 𝛽ସ − 𝛽ଷ > 0 31 44 19 94 𝛽ସ − 𝛽ଷ < 0 40 42 19 101 𝛽ହ − 𝛽ସ > 0 51 28 18 97 𝛽ହ − 𝛽ସ < 0 35 30 18 83 𝛽ହ − 𝛽ଷ > 0 50 38 28 116 𝛽ହ − 𝛽ଷ < 0 46 48 17 111 
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Table 6. Flow–Net Alpha Sensitivity and Fund Age 

Table 6 reports the results of the model in Equation (49). The dependent variable is Flow, the fund percentage 
flow and Lag_Alpha is the fund net alpha lagged by one month, 𝛼௜,௧ିଵ. Lag_Age is the fund age in 10 years lagged 
by one month. Expense is the fund expense ratio as of the most recently completed fiscal year, including 12b-1 
fees. Lag_LnTNA is the natural logarithm of the fund’s total net asset under management lagged by one month. 
Lag_Flow is the Flow lagged by one month. Vol is the fund volatility. Lag_FamAlpha is the fund family’s net 
alpha lagged by one month. Lag_LnFamSize is the natural logarithm fund family size lagged by one month. 
Standard errors are clustered by fund and presented in parentheses. The symbols ***, **, and * represent the 1%, 
5%, and 10% significance level, respectively, in a two-tail t-test. 

Panel A (1) (2) (3) (4) (5) (6)
Lag_Alpha 0.3043*** 0.3400*** 0.4031*** 0.5080*** 0.6472*** 0.7544***

(0.0628) (0.0778) (0.1055) (0.1524) (0.2125) (0.2685)
Lag_Alpha*Lag_Age -0.0187** -0.0678** -0.1852** -0.4547** -0.9396** -1.4646**

(0.0084) (0.0341) (0.0938) (0.2245) (0.4392) (0.7071)
Lag_Alpha*Lag_Age 2 0.0084* 0.0554* 0.2322** 0.6838** 1.3889**

(0.0048) (0.0293) (0.1161) (0.3165) (0.6666)
Lag_Alpha*Lag_Age 3 -0.0046* -0.0434** -0.2064** -0.5914**

(0.0025) (0.0217) (0.0942) (0.2827)
Lag_Alpha*Lag_Age 4 0.0026** 0.0268** 0.1225**

(0.0013) (0.0121) (0.0588)
Lag_Alpha*Lag_Age 5 -0.0012** -0.0121**

(0.0006) (0.0058)
Lag_Alpha*Lag_Age 6 0.0005**

(0.0002)
Lag_Age -0.0531*** -0.0650*** -0.1009*** -0.1658*** -0.2579*** -0.3949***

(0.0048) (0.0049) (0.0057) (0.0082) (0.0133) (0.0201)
Lag_Age 2 0.0031*** 0.0184*** 0.0599*** 0.1454*** 0.3141***

(0.0003) (0.0014) (0.0039) (0.0103) (0.0202)
Lag_Age 3 -0.0014*** -0.0103*** -0.0413*** -0.1277***

(0.0001) (0.0008) (0.0035) (0.0093)
Lag_Age 4 0.0006*** 0.0051*** 0.0254***

(0.0000) (0.0005) (0.0021)
Lag_Age 5 -0.0002*** -0.0024***

(0.0000) (0.0002)
Lag_Age 6 0.0001***

(0.0000)
Expense -2.8829*** -2.9761*** -3.0003*** -2.6938*** -2.5145*** -2.3891***

(0.4735) (0.4780) (0.4757) (0.4529) (0.4260) (0.3947)
Lag_Flow 0.0010 0.0010 0.0010 0.0010 0.0009 0.0009

(0.0008) (0.0008) (0.0007) (0.0007) (0.0007) (0.0007)
Vol -0.0738*** -0.0784*** -0.0643** -0.0660** -0.0731*** -0.0670***

(0.0272) (0.0268) (0.0262) (0.0259) (0.0255) (0.0250)
Lag_LnTNA -0.0112*** -0.0107*** -0.0097*** -0.0086*** -0.0078*** -0.0072***

(0.0010) (0.0010) (0.0009) (0.0009) (0.0009) (0.0008)
Lag_Alpha*Lag_LnTNA -0.0202** -0.0186** -0.0172* -0.0159* -0.0135* -0.0122

(0.0095) (0.0092) (0.0089) (0.0085) (0.0081) (0.0080)
Lag_FamAlpha 0.0004* 0.0004* 0.0005** 0.0005*** 0.0005** 0.0004**

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Lag_LnFamSize -0.0000 -0.0003 -0.0011 -0.0017* -0.0023** -0.0025***

(0.0011) (0.0011) (0.0010) (0.0010) (0.0010) (0.0009)
Constant 0.1636*** 0.1694*** 0.1822*** 0.2009*** 0.2258*** 0.2542***

(0.0108) (0.0109) (0.0110) (0.0110) (0.0113) (0.0116)
Year Dummies Yes Yes Yes Yes Yes Yes
Fund Dummies Yes Yes Yes Yes Yes Yes

Observations 323,410 323,410 323,410 323,410 323,410 323,410
R-squared 0.0242 0.0255 0.0281 0.0315 0.0350 0.0389
Adjusted R-squared 0.0241 0.0254 0.0280 0.0314 0.0349 0.0388  


